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Abstract

Abstract

DD-1, a System for Distributed Databases, is a
distributed database system being developed by CCA. SDD-1
permits data to be stored redundantly at several database

*sites i n order to enhance the reliability and I.

responsiveness of the system and to facilitate upwards
scaling of system capacity. This paper describes the
algorithm used by SDD-1 for updating data that is stored
redundan24t-.
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1. Introduction

SDD-I is a prototype distributed database system currently

being designed at Computer Corporation of America [ROTHNIE

and GOODMAN]. The system will use the data storage

facilities of Datacomputers [MARILL and STERN] that are

scattered around an Arpanet environment [METCALF]. This

report describes the basic approach to the problem of

redundant update in SDD-i. Descriptions of other aspects

of SDD-I, such as retrieval and reliability, are reported

elsewhere [ROTHNIE and GOODMAN], [WONG], [HAMMER and

SHIPMAN].

Several solutions have recently been suggested to the

concurrent update problem in a distributed database system

(see discussion in [ROTHNIE and GOODMAN]). The techniques

include performing all updates at a primary site [ALSBERG

and DAY], or using a voting discipline to perform an

update on a data item after the sites that hold a copy of

that data item have agreed to the update [THOMAS].

However, these methods suffer from the problem either of a

potential bottleneck on updates or of heavy communication

traffic.

............
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The approach to be discussed in this paper attempts to

overcome both problems by preanalyzing those transactions

that will be run frequently, so as to select those

transaction types that can be run using little or even no

synchronization.

The preanalysis technique determines, for each type of

transaction, the level of synchronization required for

that transaction type. The analysis is based on knowledge

of which portions of the database each transaction will

read or write. This analysis is based on invariant

properties of each transaction type that are in no sense

stochastic. The major assumption is that the types of

transactions that account for most of the database

activity are predictable in the sense that they only

operate on certain restricted portions of the database.

The SDD-1 system will permit data to be stored redundantly

around the network without restricting any one copy of a

logical data item to be the primary copy for updates. The

retrieval algorithm will be truly distributed, aggregating

data at a single site for synchronization purposes only

when necessary [WONG]. The system will also be able to

run in spite of multiple site failures and will be able to

recover when down sites return to operation [HAMMER and

SHIPMAN].

0*0 . . . . . . .. . . . . . . . . . . . .. . -. - .!
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In this paper we describe the formal methods used to

-~ analyze the degree of synchronization required by

transactions in SDD-1. While we believe our method to be

quite general, the discussion will be limited to its

"-',,application in the SDD-1 environment.

A simplified version of the SDD-1 concurrent update

methodology was presented in [ROTHNIE et al] and

[BERNSTEIN et all. We expand this technique more

completely in Sections 2 and 3. The proof of correctness

of our synchronization rules is presented in Section 4.

In Section 5, a further mechanism is described which

extends the earlier results.

44

4?

.. ,

.................. . . . . . . . . . . . .... .. ..-..- . .. . . ... .. . ... ... - . . ., . ..



NI-~~ 47'-"7"

Page -4- SDD-I Concurrency Control Mechanism

Section 2 The SDD-1 Architecture

""

2. The SDD-1 Architecture

2.1 Overview

An SDD-1 database system consists of a set of sites, each

site residing at a single node of the network. A site

provides some or all of the following subsystems:

1. data module - maintains a stored copy of portions

of the logical database and supervises read and write

operations on its copy;

2. transaction module - processes transactions, one

at a time, by communicating with data modules;

3. terminal module - provides a user interface that

routes each user transaction to the appropriate

transaction module for processing.

From the user's viewpoint, a transaction is entered at a

terminal and received by the terminal module that controls

that terminal. The terminal module examines the

transaction and decides which transaction module should

Ias"A
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execute it; the transaction module may or may not reside

at the same site where the terminal module is located

(i.e., the transaction module may be at a foreign site).

The terminal module may pass certain synchronization -.

information to the transaction module, in addition to the

text of the transaction, to synchronize this transaction

with other transactions that ran at the same terminal.

A transaction module receives transactions from many

different (possibly foreign) terminal modules. For each

transaction it receives, a transaction module interacts

with various (possibly foreign) data modules to obtain the

portion of the database necessary for processing the read

and write operations requested by the transaction.

Results of the transaction (e.g. printed output) are

passed back to the, terminal module that sent the

transaction.

A data module is a database management facility that

processes read and write operations from (possibly

foreign) transaction modules. Certain synchronization

facilities are supported by the data module so that

transactions are able to obtain a consistent view of the

database. The synchronization facilities supplied by a

data module are entirely local to that data module and do

not require that the data module ever explicitly cooperate

(via message passing, say) with other data modules.

:[~~~~~~~~~~~~~~~~~.............. .......1." . .:. . .. ... . ... . " . . ...... : :. ' . .-....-... ... . -.• .- .. .,
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The three kinds of modules supported by SDD-I constitute

three levels of virtual machines (see figure 2.1). At the

lowest level are the data modules. They provide a

facility for processing read and write commands

atomically. At the second level are transaction modules.

Transaction modules provide a facility for processing

transactions and guarantee that the union of all a

transactions processed by an SDD-1 system is "serially

reproducible" (this concept, discussed in [ROTHNIE and

GOODMAN], will be developed in great detail in the

sequel). At the third level are terminal modules.

Terminal modules provide a user interface and guarantee

certain consistency conditions among transactio-s run at

that terminal (in addition to serial reproducibility).

While we will not discuss the particular software/hardware

structure that will be used to implement the virtual

machines, one can think of the three types of modules

being implemented as software processes, with each data

module incorporating a Datacomputer [MARILL and STERN].

.:-9

". . .,.. -.
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7.

2.2 Distributed Data Organization 7A

* A logical database in SDD-1 consists of a set of relations

[CODD]. Each relation has one domain named "tuple

identifier" (TID) which is a key of the relation; that

is, no two tuples of a relation can have identical TID

values.

Each relation is partitioned into a set of logical

framents. Logical fragments are defined by first

partitioning the set of all possible tuples of the

relations into a set of mutually exclusive partitions.

For example, the EMPLOYEE relation could be partitioned by

DEPARTMENT, so that each partition contains all of the

employee tuples in a single department. A logical

fragment consists of a projection of a partition on the

TID domain and one other domain. The inclusion of the TID

domain guarantees that the logical fragment has exactly

one tuple for each tuple of the partition from which it

was selected.

A stored copy of a logical fragment is called a stored

frament. Stored fragments are the units of data

distribution; a stored fragment is either entirely

, :i:; i! : ::.-.~ i - : : - . i< -. :_ . , . - / .i. i . .. .!~ i .. , ;- . 3 :... -. - . . - ... i
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present or entirely absent at a data. module. Note that

several stored fragments from j. single partition of a,

relation might conveniently be stored as a single file at

Ia data module so that the TID domain need not be repeated
for every fragment.

We do not require that two stored copies of a logical

fragment at two different data modules be identical at all

times. The redundant update mechanism will be responsible

for only allowing consistent copies to be read.,-

Each logical fragment is partitioned into logical data

items, a stored copy of which is called a stored data

item. A data item is the smallest updatable unit in the -

database.

. o1

Each logical data item may have several associated stored

data items. Hence, when referencing a logical data item, ht

it is necessary to choose a particular stored data item to .

reference. The concept of materialization is convenient

here. Formally, a materialization is a total function

from the set of logical fragments into the set of stored
fragments. That is, a materialization is an assignment of-J

a stored fragment for each logical fragment.

Each transaction is said to run in a particular

materialization of the database. The materialization of a
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transaction specifies which copies of logical fragments

are to be read. In order to maintain the internal.

consistency of all stored copies of a particular logical ..

fragment, a transaction must perform its updates on all

stored copies of each logical data item (not just the copy

specified by the materialization). As a result,

materializations are not useful when considering write

operations. The process of updating fragments will be

described later in some detail.

There are no logical restrictions on how to configure a

materialization, other than that each logical fragment

* must map into a stored copy of that same fragment. A

, materialization need not, for example, obtain any of its

stored fragments from the site at which it executes.

Also, two materializations may use different stored

copies of a single logical fragment. Two transactions
".'-.'-.'

concurrently running in these materializations may

therefore read different stored copies of a single logical

fragment concurrently. The system as a whole does not

support a single primary copy of a logical fragment for

all materializations. How the system avoids race

conditions in such an apparently chaotic environment is

the main subject of this report.

... -. .. -,.. . ... . -. .- .. . - - .o . ... -.-. - , - , - , ... -.- -. -. . - .- . ...-.
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2.3 Transactions

The basic unit of a user computation in SDD-1 is the

transaction. Transactions are structured to execute in

three sequential steps:

1. The transaction reads a subset of the database,

called its read-set, into a workspace.

2. It does some computation on the workspace.

3. The transaction writes some of the values in its

workspace back into a subset of the database, called

its write-set.

The read-set and write-set of a transaction are defined on

the logical database. That is, the transaction references

only logical data items; it has no knowledge of its

materialization or of the distribution and redundancy of

stored copies..2

The workspace into which data is read is, in general,

distributed. That is, various parts of the workspace may

reside at different data modules. In SDD-1, the execution

of a transaction is also, in general, distributed;

C. . . . . . . . . .. . . . . . . . . . . . . .- . - -
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processes running at various data modules operate on the

portion of the workspace located at that data module.

These processes run concurrently and/or sequentially with

respect to one another and transfer data between data

modules as needed. The processes running at the data

modules are initiated and coordinated by the original r..

transaction module to which the transaction was submitted.

This function is performed by the access planner

sub-module within the transaction module. The access

planner converts the original transaction as submitted by

the user into a number of local data management processes

running at the data modules where the workspace is stored.

The algorithms used by the access planner are described in

[WONG]. Again, this distribution of processing is

entirely internal to SDD-1 and is not reflected in the

user's transaction in any way.

To process a transaction, a transaction module must obtain -...
the read-set data for the transaction's input and later

write its output into copies of its write-set. These

functions are performed by sending READ and WRITE

messages, respectively, to data modules.

A READ message for a transaction is sent to a data module

and is a request to read some of the stored data items at

that data module. Each stored item that is requested must

*"..
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be the particular stored copy of a logical data item in

the read-set of the transaction that is specified by the

materialization in which the transaction runs. So, if a

transaction wants to read logical data item x, and the

transaction's materialization associates x with its

particular stored copy at data module alpha, then to read

x the transaction must send a READ message to alpha. k..
,'. - " ,":

A WRITE message is sent from a transaction module to a .':

data module to report updates that have taken place to

certain data items as a result of executing a transaction

by that transaction module. If a transaction updates a

particular logical data item x, WRITE messages are sent to

all data modules that have a stored copy of x (not just to

the one stored copy associated with the transaction's

materialization).

A transaction module sends at most one READ message and at

most one WRITE message to any particular data module on

behalf of a single transaction. If a transaction reads

data from two stored fragments which reside at the same

data module, for example, then only one READ message will

be issued to read from both fragments. This is an

important point, as each data module must perform READ's

and WRITE's as atomic operations; for example, none of

the data read by a READ message can be updated by some

WRITE while the READ is being processed.
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2.4 System Consistency Guarantees

One of the important advantages of SDD-1 is its ability to

maintain multiple copies of the same logical piece of data

at several different data modules. It is this capability

of SDD-1 that presents the most difficult technical

problems. The system must maintain the consistency of all

copies of data and ensure that the READ requests for a

transaction retrieve a correct state of the database. In

addition, transactions reading or writing data in several

data modules must be synchronized to ensure that a

transaction does not read partial results of another

transaction. If transactions are allowed to run in an

arbitrary interleaved manner without coordination, various

anomalies in system operation may occur. The system

design guarantees two properties which prevent these

anomalies from occurring.

System Property 1: Convergence - If updates were to be

quiesced, then after some finite period of time all

transactions which read the same logical data item will

retrieve the same value for it. Essentially this means

that all physical copies of a logical data item will

eventually converge to the same value.

~ .1 - .. - -. ---...
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System Property 2: Serial Reproducibility (or

Serializability) - The operation of the system when

running transactions in an interleaved manner is

equivalent to a history of operation in which each of the

transactions runs alone to completion before the next one

begins. That is, the interleaved operation is

reproducible by an equivalent one in which the

transactions run serially. By "equivalent", we mean that

each transaction produces the same output values and that

the final state of the database is the same. The concept

of serial reproducibility is crucial to an understanding

of the system and will be taken up in detail later.

These two system properties are provided at the

transaction module level. That is, the set of all

transactions submitted to transaction modules must satisfy

these properties. The terminal modules provide a level of

system guarantee beyond that of the transaction module.

These guarantees however are not the main subject of this ':;

paper.

d j .
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2.5 Terminal Modules

A transaction is entered at a terminal and is received by

*the terminal module connected to that terminal. The

terminal module must determine the read-set and write-set

of the transaction. This information will be used to

decide which transaction module should execute the

transaction, as each transaction module handles only

certain classes of transactions. For example, in an

* airline reservation system, each transaction module may

* execute transactions corresponding to flights originating

at a certain city. By examining the read-set and

* write-set of a reservation transaction, a terminal module

can determine the originating city and thereby is able to

choose an appropriate transaction module to execute the

transaction.

*The terminal module makes sequencing guarantees above and

* beyond those of the transaction modules. The terminal

* module incorporates certain synchronization information

with the transaction before sending it to a transaction

module. This information allows the transaction module to

* avoid certain sequencing anomalies with respect to other

*transactions entered at the same terminal.

-. 4.- 4'. .. *..". . .-...-
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The main body of this paper however concerns the design

and interaction of the transaction modules and data

modules. For convenience, transaction modules and data

modules will be referred to as TM's and DM's,

respectively, in the sequel.

.1.

.1

. . ..• - .- ° ..-
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2.6 Timestamps

System property 1, convergence, is provided in SDD-1

through the use of a timestamping mechanism. Each TM has

a clock used for generating globally unique timestamps.

After a clock has been read, it cannot be read again until

it has been incremented. By appending the TM number as

the low order bits of each timestamp, we ensure that every . "

timestamp is globally unique within the system. This

method of generating unique timestamps was suggested in

[THOMAS].

None of the mechanisms described in this report require

that clocks running in different TM's be at all

synchronized. For reasons of efficiency however it is

necessary to assume that clock values in different TM's be

reasonably close to each other. In [Lamport] a method of

synchronizing clocks in a network is described that

involves pushing ahead a local clock if a message with a

future timestamp is received. This simple method will

keep clocks sufficiently well synchronized for the

purposes of SDD-1.

. - . .". " " . . , "- . -. i . . . .. .' .
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Each transaction, before being run, is assigned a unique

timestamp. The transaction's timestamp will be carried on

all its WRITE messages.

In addition, timestamps are maintained for every updatable

physical data item in the database. Note that a timestamp

is associated with each physical data item, rather than

with the logical data item; there may be many physical

copies of a logical data item and each copy of the logical

data item has its own timestamp. This timestamp is the

timestamp of the last WRITE message which updated that

physical data item.

In order to implement property 1, convergence, each data

module obeys the following rule: A data item is updated

by a WRITE message if and only if the data item's

timestamp is less than the timestamp of the WRITE message.

So, to process a single WRITE message at a data module the

following procedure is used. For each data item in the

WRITE message, the timestamp in the WRITE message is

compared with the timestamp of the stored data item at

that data module. If the timestamp in the WRITE message

is greater than the timestamp of the stored data item,

then the new value of the data item in the WRITE message

is written into the stored data item with the new

timestamp. If the timestamp of the WRITE message is less

-. . -.
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than the timestamp of the stored data item, then the

update is not performed on that data item. This is a data

item by data item check; some data items in the WRITE 7101

message may result in update operations while others may

not. Also, if a data item in the WRITE message is part of

a fragment that is not stored at the data module, then the

update is not performed.

It will be quite common for WRITE messages to contain many

data item updates that are not performed. This will

happen when a WRITE message for a recent transaction that

updates some data item is processed at a DM before a WRITE

message for an earlier (i.e., older) transaction that

updates the same data item. Such situations are not

errors. They are simply the way that the system reorders

updates to occur in the same order that they actually

executed.
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2.7 Interleaved Transactions

The system usually has many transactions in progress at

any one time, both because there are multiple TM's

operating concurrently within the system and because

individual TM's are processing transactions concurrently.

The resulting arbitrary interleavings of READs and WRITEs

can introduce serious problems of database consistency.

System Property 2, serial reproducibility, deals with this

problem. -

The issue of serial reproducibility arises because a

system's atomic actions are at a finer granularity than

its users' atomic aqtions. In our case, the users' atomic

operations are user transactions, while the system's

atomic actions can be taken to be the execution of READ

and WRITE messages at the DM's. Each DM behaves as if

READ's and WRITE's are processed as indivisible units.

That is, it is not possible for a READ operation to

observe the effects of only a part of a WRITE operation at

a DM.

When a system allows the execution of several user

transactions at the same time, then the system atomic
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operations corresponding to different user transactions

are interleaved. There is no guarantee that the behavior -

of such a system conforms to the user's expectation that

each transaction is treated as an indivisible unit (a

user's transaction should not examine the database during

the execution of another user's transaction, when the .

database is possibly in an inconsistent state).

Serial reproducibility requires that a system operating in

an interleaved manner is equivalent to a system in which

each transaction is processed in its entirety before

another one is begun. In other words, for any given

interleaved execution, there exists an ordering of atomic

transactions, called a serial ordering, which is

equivalent to the interleaved operation which in fact

occurs. By "equivalent" we mean that each transaction in

the interleaved ordering reads the same data as it would

have read if the transactions had been run one at a time

in the serial order (and hence, will produce the same

output). Note that serial reproducibility requires only

that there exists some serial order equivalent to the

actual interleaved operation. There may in fact be

several such equivalent serial orderings.

The modelling of correct concurrent operation by the

concept of serial reproducibility is based on the
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assumption that each user transaction will preserve

database consistency if it runs atomically. That is, if

only one transaction were allowed to execute at a time,

and if the database state is consistent, then after

executing a transaction the database state will be

consistent. So, a serial ordering of transaction

executions will, by induction, result in a consistent

database state. Since a serially reproducible history of

operation is equivalent to some serial ordering, then the

serially reproducible history results in a consistent

database state as well.

If a system does not guarantee serial reproducibility then

anomalies can result from operation of the system.

Consider, for example, the following scenario in SDD-1.

We assume a single copy of data item x, which initially

has the value x=O. There are two transactions in the

system; transaction i sets x:=x+1, and transaction j sets

x::x+2. The following sequence of events occurs:

Transaction i reads x=O

Transaction j reads x=O

Transaction j sets x::2

Transaction i sets x:=1

Any execution of the two transactions one after the other

would have resulted in setting x to 3. The result of the
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interleaved execution was to set x to 1, contrary to the

user's intention. To guarantee serial reproducibility, we

need a mechanism that prevents these kinds of undesirable

interleavings.
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2.8 Transaction Classes

The problem of interleaved transactions is not unique to

distributed systems. Numerous solutions have been devised

for non-distributed systems, most notably locking

mechanisms. These techniques do not, however, generalize

well to distributed systems. A number of proposals have

been suggested for extending locking mechanisms to

distributed systems that contain redundant data. These

techniques are reviewed in [ROTHNIE and GOODMAN]. We

feel, however, that such techniques require unacceptably

large amounts of network transmission and delay whenever

there is considerable data redundancy.

Yet at first glance the network transmission seems to be

necessary. How can one TM safely proceed to run a

transaction without first consulting other TM's to

determine that it does not interact badly with

transactions currently executing elsewhere?

Our solution to this problem is to have the DBA establish

a static set of transaction classes. Each transaction>

class is defined in terms of its logical read-set and

write-set and is assigned to run at a particular TM. A

, " ° - " + ' " " " " ' " +
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transaction can run in a class if the read-set and

write-set of the transaction is contained (respectively)

in the read-set and write-set of the class. Classes need

not be disjoint, so a transaction may fit into more than

one class. In this case, the decision as to which class

should be chosen is made by the terminal module that

accepts the transaction. The terminal module will

normally choose a class that requires the least amount of

synchronization, and is therefore the least expensive

class (synchronization-wise) to use.

The predefined classes reflect the typical transactions

that are intended to run at each site in the network.

Since each TM is aware of the complete set of transaction

classes assigned to foreign transaction modules, it can

know exactly what potential conflicts its own transactions

have with those that might be running at other TM's.

From the information contained in the class definitions, a

TM can determine the degree and nature of coordination

necessary to ensure a serially reproducible ordering of

transactions. We believe that, for many kinds of

applications, the most frequent determination will be that

no coordination whatsoever is actually required to run a

transaction. In such a case, the transaction is just

immediately executed, since it does not interact badly

• °4



SDD-1 Concurrency Control Mechanism Page -27-
The SDD-1 Architecture Section 2

with transactions submitted elsewhere. In other cases, an

analysis of the class definitions might indicate that the

pending transaction could be involved in a potential

conflict and some coordination is necessary with respect

to particular foreign classes. Our purpose here is to

develop a method of determining exactly what conflicts

occur and to provide coordination mechanisms that

eliminate the conflict.

If the problem of determining exactly what conflicts might

occur required run-time calculations when each transaction

was introduced at a class, then the concurrency control

mechanism would potentially be quite expensive. Actually,

since the class definitions are static, the computations

checking for potential conflicts can be done once, when

the class definitions are selected. Selecting the

appropriate coordination mechanism at run-time amounts to

a table look-up. So, the only significant run-time

overhead is the coordination mechanism itself. If no

coordination is found to be necessary, then the run-time

overhead is negligible. This is in contrast to locking

mechanisms which always set locks, whether or not the

synchronization is really required.

.- .
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2.9 Class Pipelining Rule

The first question to address is the issue of the

serializability of transactions which execute in the same

class. To ensure this, we require that within a class all

of the transactions are actually executed serially, one

after another. This is expressed as follows-

Class Pipelining Rlule: For any particular data module

and transaction class, READ and WRITE messages from

that class arrive and are processed in timestamp

order.

The class pipelining rule forces transactions that run in

a single class to be processed serially at all DM's in the

same order. So, two transactions from a single class are

never interleaved at a single DM nor are they processed by

two DM's in two different orders. This is sufficient to

guarantee noninterference of any two transactions that run

in a single TM.

-4-.
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2.10 Class Conflict Graphs

Given the set of class definitions, we need to detect

potentially harmful interactions between classes. The

approach used to resolve these questions involves the

construction and analysis of a class conflict graph.

A class definition specifies a logical read-set and

write-set and a materialization. This is the only

information required to determine class conflicts. From

the read-set and the materialization, the READ messages

needed by the class can be predicted. From the write-set,

the WRITE messages needed by the class can be predicted,

since a WRITE message must be sent to all copies of the

logical write-set. Since all READ and WRITE messages are

predictable, we will be able to predict all possible

harmful interactions between classes.

A class is represented in the class conflict graph as

three types of nodes connected by edges. The three types

of nodes are e, r and w nodes.

An e node represents the execution of a transaction which

runs in the class. A class superscript (e.g. ei)

-~ ~~ k t X.. . . ,.S- 1
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designates the class identifier for the transaction class.

(Throughout this report, transactions will be indicated by

lower case letters, and transaction classes by lower case

letters with an overscore.) The graph includes exactly

one e node per class.

An r node represents the processing of' a READ message to

retrieve data for transactions in the class. A

superscript represents the class identifier and a

subscript indicates to which DM the READ message would be

lsent (e.g. r a represents a READ message from aalpha ... :

transaction in class 3 to DMalpha). (Lower case Greek

letters denote DMs.) For any class, there is one r node

for each DM which stores part of the class's (physical)

read-set.

A w node represents the processing of a WRITE message

issued by a transaction running in the class. Again, a

superscript indicates the class identifier and a subscript

indicates the DM to which the WRITE message would be sent

(e.g. w ). For any class, there is one w node for
gamma

each DM on which a copy of (some of) the write-set items

lie.

Edges connect the e node for a particular class with the r

and w nodes for that class. These edges are called

vertical edges, because of the convention that, for each

4-
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class, r nodes are drawn above the e node and w nodes are

drawn below the e node.

Figure 2.2 illustrates the representation of a class whose

read-set lies in two datamodules and whose write-set lies

on four datamodules.

After all the predefined transaction classes have been

placed in the graph, additional edges are added to

indicate interactions between the classes.

---------------------------------------------------------

rI r
There are two READ messages, one to DM.
and the other to DM-

Vertical This is transaction class 14

Edges

Data must be written to four DM's:mj,,.-,

Figure 2.2 Representing transaction classes in the graph

---- --- ---- --- ---- --- ---- --- ---- --- ---- --- ---
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Where two classes have a read/write intersection, a

dional edge is drawn. The edge is drawn between an r

node which represents the reading of some particular

physical data item and a w node which represents the

writing of that same item (see Figure 2.3). Note that

such a diagonal edge only connects r and w nodes with the

same DM subscript, since a physical data item resides at

only one DM. If the intersection of one class's read-set

and another's write-set spans more than one DM, then

several diagonal edges connect the two classes (see Figure

2.4).

-- - "4 4

"7I J -J ""."• .. -

• ~~Figure 2. 3 - The .oiagonal edge indicates that class z...-'

~~reads some data item from DMg which can be written .. :

r ~~by classj.,-:---- --

T. ..
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I.O

I. -.

1- 3

ee

W- w= wi War w10

Figure 2.4 - Here two diagonal edges connect the two classes
since the read/write intersection exists at both DMC
and DM.

-----------------------------------------------------------------------

Horizontal edges are drawn between e nodes of two classes

that have a logical write/write intersection (see Figure

2-. ).

The graph must contain all classes and all possible

vertical, diagonal and horizontal edges.

The conflict graph is used to determine unsafe

interactions among a set of classes. By "unsafe" we mean
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/ 
0

e e.

W W w wi

Figure 2.5 - A horizontal edge is added to the graph
when two classes write the same data item.

that the classes can interact in such a way that there is

no serial ordering of transactions that is equivalent to

the interleaved eAecution that actually occurred. The

interpretation of the diagonal and horizontal edges

applied to a given interleaved execution is the key to

determining transaction serializability.

- -
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2.11 Graph Cycles and Nonserializability

Suppose the system executes in a manner that permits the

interleaving of READ and WRITE messages from different

transactions. We call such an interleaved execution a

Lo&. If the execution is not interleaved, that is, if

transactions execute serially one after the other, then we

call the execution a serial log. Our goal is to only

permit the system to produce logs that are serially

reproducible. This means that for each log resulting from

the execution of the system, there must exist a serial log

that produces the same effect on the database. We say

that two logs are equivalent if they produce the same

effect on the database.

Of course if the transactions in a log are arbitrarily

reordered into a serial log, the resulting serial log will

not necessarily be equivalent to the given log. The

conflict graph helps us to characterize precisely those

serial logs that produce the same effect as a given log. 0

Consider diagonal graph edges. A diagonal edge represents

a read/write intersection between two classes. If one

transaction from each of the two classes appears in the

r ".
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given log, then in any equivalent serial log the -

transactions should appear in the same relative order as

their intersecting READ and WRITE messages were processed

in the given log. For if the READ message of one

transaction preceded the WRITE message of the other in the

given log, but the transactions appear in the reverse

order in the serial log, then in the serial log the READ

message may read different values for some of its inputs

in the serial log than reads in the given log. So, the

transaction corresponding to the READ may produce a

different output in the serial log than in the given log.

That is, the two logs are not necessarily equivalent.

This is just to say that only some serial reorderings of

the given log are possible, given the existence of this

diagonal edge. (Actually, the above claim about

permissible serial reorderings is somewhat too strong, as

shown in [PAPADIMITRIOU et all. However, the reasons are

quite technical in nature and are not needed to gain an

understanding of the interpretation of conflict graphs.)

Consider classes 1 and 3 in figure 2.3. We denote READ

and WRITE messages using a notation similar to that of

node labels. The processing of the READ message for

transaction i at DMalph a  is denoted Ralpha; the

processing of the WRITE message for transaction i at '

DM is denoted Wi  -alpha alpha*

-A
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Assume two transactions, say i and j, are running

concurrently in classes 1 and ] respectively. If the READ

message Rilpha is processed at DMalpha before the WRITE

message WJ  is processed, then any equivalent serialalpha'

ordering must have transaction i precede transaction j.

This must be so, for otherwise transaction i would have

read the results of the update made by transaction j. On
the other hand, if the WRITE message WJ  is processed

alpha s processe

before the READ message Ri then transaction mustalpha, hntascinjms :.

precede transaction i.

To reiterate, a diagonal edge implies a particular

relative ordering in any serial log that is equivalent to

the given interleaved execution. The particular ordering

that is chosen depends on the particular order in which

READ and WRITE messages were processed; however the

relative serial ordering of transactions from classes with

a dia. onal edge connectin them_ is not arbitrar.

Horizontal edges also affect possible reorderings of

transactions. A horizontal edge indicates an intersection

of write-sets. Whenever two transactions write the same

data, the update from the transaction with the greater

(i.e. later) timestamp takes precedence over the update

from the transaction with the smaller (i.e. earlier)

timestamp. If two transactions in different classes
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appear in an interleaved execution and have a write/write

intersection, then they must appear in timestamp order in

any equivalent serial log. Otherwise, the effect of the

intersecting write messages would be reversed, thereby

producing a different database state. Notice that it is

the timestamp order of the transactions and not the order

in which the WRITE messages were processed that is

significant here. This is because the rule by which WRITE

messages are processed uses the timestamps, not the order

of arrival of the WRITE messages, to determine which write

operations are actually applied.

3o, a horizontal edge also implies a particular relative

ordering of certain transactions in any serial log that is

equivalent to the given interleaved execution. This

ordering is always the timestarnp ordering of the

transactions that have the write/write intersection.

In the same way that diagonal and horizontal edges

restrict the ways in which transactions can be reordered

without upsetting the resulting database state, paths of

edges can restrict reorderings of transactions as well.

For example, a particular diagonal edge may imply that

transaction i must precede transaction j and an adjacent

horizontal edge may indicate that transaction j must

precede transaction k (see figure 2.6). So, the net

- . .--- - - . I - - " ,
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effect of this path is that transaction i must precede

transaction k, even though no single edge may connect . -

rA rr 
rr

_- 
ek

p..
e

W-C( We W> W

Figure 2.6 - A path between two classes in the graph indicates
that transactions in those classes must be serialized in some
particular order.

their respective classes in the conflict graph.

Now, suppose again that we have a conflict graph and a log

of interleaved transactions. Suppose that for each pair

of transactions, say i and j, the log and graph edges

never imply both that i must precede j and that j must

precede i in the serial reordering. That is, either i and

j can appear in an arbitrary order, or there is only one

order that will do. Then it is easy to see Lhat there

must be a serial log equivalent to the given log. Any

• " • • . - . . . ° • " 
. . . .. .'
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serialization that preserves the relative orderings that

are demanded by the graph serves the purpose.

However, suppose instead that there are two transactions

such that one path in the graph requires that they appear

in one order and another path in the graph requires that

they appear in the other order. Then there is no

equivalent serial log that includes these two

transactions, for whatever order that they appear in the

serial log, the graph indicates that they must also

appear in the other order. In this case, there are two

different paths connecting the two transactions' classes

in the graph. These two paths constitute a cycle in the

graph. So, apparently a cycle in the graph corresponds to

a non-serializable execution of transactions. If there

are no cycles, then there is at most one path connecting

any pair of classes. Hence, the graph can only require

that two transactions be serialized one way or the other,

but never both ways. So, a cycle-free graph implies that

every log is serializable, and no s.chronization

whatsoever is required. The preceding informal argument

demonstrating this fact will be proved quite rigorously in

Section 4.

Consider the cycle in Figure 2.7 consisting of two

diagonal edges and four vertical edges. If we examine a

-A.
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eI ,

e

w w w$W w ,..:

Figure 2.7 - Cycles represent situations in which
non-serializability is possible.

case of concurrent transactions in each of the two classes "

and the particular sequence of events in which the READ

message Rta is processed before the WRITE message WJ  .-abe abeta'..,
and the READ message Rj  is processed before the WRITE

gamma

message Wamma then there is no serial ordering of the

two transactions which is equivalent to their interleaved

ordering. This follows because the rbeta-wbeta edge

requires that the transaction in class I occurs before the

transaction in class 3, yet the riamma-wgamma edge implies

the opposite relative ordering. Therefore, it must be the

case that no equivalent serial ordering exists.

V....

L j" "L"..
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We have shown that potentially dangerous interleavings can

be identified by a cycle in the class conflict graph. So,

as long as no cycles exist, the class pipelining rule is

sufficient to guarantee serializability. Where cycles do

exist, some synchronization among classes is required. In

SDD-1, this synchronization is accomplished by protocols.

, I

* . .
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2.12 Protocol P3

When a cycle exists in the conflict graph, then an

interleaved execution might be such that a pair of

transactions, i and j, must be serialize with i preceding

j and j preceding i, clearly an impossibility. Protocol

P3 prevents this situation by making the following

guarantee: If two transactions belong to two classes

connected by a diagonal edge in a cycle, then the

timestamp order of the two transactions is the same as the

relative ordering dictated by the diagonal edge. For

example, suppose the edge (r' a ' ) lies on a cyclealpha' alipha ) iso yl i -[

and transaction i executes in class I and j executes in

class J. Then, assuming protocol P3 is observed, Ralpha

is processed before Wj  if and only if the timestamp of
alpha

i is smaller that the timestamp of j. Before describing

how P3 accomplishes this task, let us first examine how P3

prevents nonserializable executions.

Consider again transaction i and j above. Since they

apparently must be serialized in both orders, there must

be two independent paths connecting them in the graph,

such that one path requires that i precede j and the other

- .--. j- -,
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requires that j precede i. Suppose the timestamp of i is

smaller than that of j. So, the path that requires j to

precede i in the serial reordering is trying to serialize

them in reverse timestamp order. But suppose every

transaction pair connected by a diagonal edge in this path

observes P3. Then each such pair must be serialized in

timestamp order, as P3 requires. Consider a pair of

transactions connected on the path by a horizontal edge.

Following the discussion about horizontal edges in the

last section, they too must be serialized in timestamp

order. Thus, every pair of transactions in the

interleaved execution that corresponds to a graph edge

along this path must be serialized in timestamp order.

The net effect (by induction on the length of the path) is

tiat the entire path requires that i and j be serialized

in timestamp order. But this is a contradiction, since

the chosen path was one that required the transacticns to

be serialized in reverse timestamp order. The conclusion

is that all paths in the graph between i and 3 require

that i and j be serialized in timestamp order. Protocol

P3 prevents the case that there are two independent paths I
between land 3 that require opposite relative orderings.

To implement protocol P3, we need to synchronize the READ -

and WRITE messages of transactions that correspond to the

endpoints of' a diagonal edge in a cycle. To explain the

- ~ ~ ~ -. -- - - .
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operation of P3, suppose that the edge (r w is
lpha, Walpha)

a diagonal edge in a cycle; so, for each transaction i in

class I, R has to run P3 against class 3 at DMalpha .alpha alha

This is accomplished by appending a read condition to each
read message Ri

alpha' The read condition includes the

timestamp of transaction i, say TSi, and the name of the

class against which P3 is being run, in this case 3. A

data module, upon encountering a READ message with the

attached read condition < TSi,3 >, must not process the

READ until it is certain that all WRITE messages from J

with timestamps prior to TS. have been received and

processed, and that it has not processed any WRITE

messages from 3 with a timestamp greater than TS. This

ensures that the READ messages R1 is processed before
alpha sree fe

a WRITE message from 3 if and only if TS i is smaller than

the timestamp of the transaction corresponding to the

WRITE message. That is, it guarantees that the diagonal .

edge forces transactions from the two classes to be

serialized in timestamp order. We refer to this mechanism

as protocol P3, and would say, for example, that

transactions in class 1 run protocol P3 against -

transactions in class 3 at DMalphaalpha"*--i-

Several problems arise about the operation of protocol P3.

Suppose the DM has already processed a WRITE message from ."-

the specified class 3 witt a tin.estamp greater than TS..

I"1
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In this case, the READ message must be rejected by

DMalpha . The initiating TM then assigns a new timestamp

to the transaction and resubmits its READ requests.

Notice that all READ messages must be resubmitted if any

READ message is rejected.

A more serious problem is how to guarantee that a DM has

received all WRITE messages through some particular time.

The solution lies in the class pipelining rule. Recall

that READ and WRITE messages from a class to a DM must be

processed in timestamp order. If DMlha wants to process

all WRITE messages from J up to but not past time TS i  it

simply processes all WRITE messages from 3 until it

receives one with a timestamp greater than TS. It holds
1*

this WRITE message until R is processed, therebyalpha-" "

satisfying the read condition attached to R
alpha*

Unfortunately, if class 3 is idle because it has no
transactions to process, DMa may need to wait for a

~~~~~alpha myne owi o

long time until a message timestamped later than TS.

arrives from 3. To handle this problem we have TM's send

out NULLWRITE messages to appropriate DM's. A NULLWRITE

message specifies a class and a timestamp. It is

semantically equivalent to a WHITE message that does not

update any data. When a DM receives such a NULLWRITE

message, it can be sure that it has received all WRITE
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messages from the indicated class through the given

timestamp.

TM's will send out NULLWRITEs on a periodic basis. In

addition, a TM may be specifically requested to send a

NULLWRITE for a particular class and timestamp. This

specific request is in the form of a SENDNULL message and

may be sent by either another TM or a DM. A discussion

and analysis of various strategies for sending NULLWRITE

and SENDNULL messages will appear in a later report.

To illustrate the use of protocol P3 for eliminating bad

interleaved executions, let us reconsider the anomalous

scenario discussed in section 2.7, this time adding a bit

more structure to the problem.

We assume a single copy of data item x, residing at

DMalpha, with initial value x=O. Class 1 has been defined

'o run at TM with read-set [x} and write-set :x}.alpha

Class 3 has been defined to run at TMbeta with read-set =

{x} and write-set : x}. The class graph in this

situation is shown in figure 2.8. Notice that a cycle is

present and that transactions in class i must run P3

against class 3 and that transactions in class 3 must run

P3 against class I. .-

, N-

[,-i
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Class: i j
Transaction Nodule:
Readset: from DM, x from DM

r r
Graph:

e: e.

Figure 2.8 -Class Conflict Graph for Example in
Section 2.12.

A transaction, i, arrives at TMalpha of the form x:=x+1.

TMalpha assigns the transaction to class i and gives it

timestamp TS. A transaction, j, arrives at TMbeta of the

form x:=x+2. TM beta assigns the transaction to class 3
and gives it timestamp TS. TS i and TS. cannot be equal

because all timestamps in the system are unique. Let us

assume that TS. < TS Now the following sequence of

events occurs:

" ." i ' 'iY . : • ." . . .. ... _ . . .



SDD-1 Concurrency Control Mechanism Page -49-
The SDD-1 Architecture Section 2

1. TM sends a READ message, R to DMalpha mesgalpha' alpha0

to retrieve the value of data item x for transaction

i. This READ includes a P3 read condition against

class 3. The READ message cannot be immediately

processed because WRITE messages through time TS.
1

from class 3 have not yet been received at DMalpha .

2. TMbeta sends a READ message, Rj  to DMalpha tobet alpha' alpha

retrieve the value of data item x for transaction j.

The READ message can be immediately processed (the

presence of a class 1 READ message at DMalpha with

timestamp TS. > TSj insures that all WRITE messages

from class I have been received through time TS.).

The result of the READ is x=O.

3. TMbeta sends a WRITE message for transaction j to

DM setting x:=2.alpha

4. TMbeta sends a NULLWRITE message to DMalpha with

timestamp TS, > TS. (This message may be a

response to a SENDNULL request from TMalpha* The

class pipelining rule requires that this message

could not be sent before the WRITE message with time

TS. < TS.,). The READ message for transaction i can

now be processed. (The presence of the NULLWRITE

message at DMalpha with timestamp TSj, > TS i

satisfies the P3 read condition.) The result of the

READ is x=2.
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5. pM sends a WRITE message for transaction i toalpha,. .,

DM setting x:=3. Notice that this WRITE message
alpha

overwrites the earlier value of x=2 because the

earlier value was associated with timestamp TS. and

the current WRITE message has timestamp TSi>TS..

The final value of data item x is 3, as expected. The

anomalous interleaving that was described in the example

of section 2.7 has been prevented by the use of protocol

P3. J

We have seen that by locating graph cycles, by finding

every class that lies at the r-end of a diagonal edge

embedded in a cycle, and by having transactions in that

class run protocol P3, we can guarantee that all

interleaved executions will be serializable. However,

there are situations in which weaker protocols (i.e.,

protocols that allow more concurrency) than P3 may be

used. This leads us to a discussion of protocols P2 and

P2f.

.4 " "
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2.13 Protocol P2
p..

The main opportunity for weakening the P3 protocol arises

in connection with the transactions that participate in a

conflict graph only with their read-nodes. These

read-only transactions contribute to non-serializability

only because they may observe certain WRITE messages being

processed in reverse timestamp order. For example,

suppose we have classes 1, 3, and I connected by the edges

(wi r3  and (r k ) as shown in figure
alpha' alpha arlpha, Walpha

2.9. Class 3 is a read-only transaction whose read-set

intersects the write-sets of classes i and 1 Suppose

transactions i, j, and k execute in classes 1, J, and

(respectively) such that k is timestamped before i which

is timestamped before j. At DMalpha, the following

sequence of events might occur: first Wi  is ..
alpha

processed. then Ri is processed, then W istea' alpha alpha ]

processed. In this case, even though k is timestamped

earlier that i, from j's point of view transaction i

precedes transaction k, since it sees i's update but has

not yet seen k's update. That is, this interleaved

execution requires that transaction i be serialized in

front of transaction k, which is the reverse timestamp
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order. If another path in the conflict graph connected 11

to such that the interleaved execution required the

* timestamp ordering, then the impossible requirement that i

both precede and follow k in the serial reordering means

that the execution is not serializable. In the previous

section we showed that if Rj  r
alpha ran P3 against i and -

' (due to the two diagonal graph edges), then this

non-serializable situation could not arise. However,

there is a weaker protocol that RJ  can run in this
alpha

-----------------------------------------------

y-.[k. .

I ., e
e e

ho W /l "W( W
Figure 2.9 - A transaction reading from two other
transaction classes may force a relative ordering of these
classes' transactions in equivalent serial orderings.
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situation that has the same effect.

The effect we want to produce is that if W isalphai!i::
timestamped after Wk an

alpha and Walpha is processed before

Rp then Wk  is processed before Rj  as well.alpha' alpha alpha

If this condition is made to be true (by some protocol)

then Rj  cannot observe W and Wk toe
alpha alpha alpha to execute in

reverse timestamp order. The protocol that has this

effect is called P2.

Protocol P2 applies to a read message Rj  if and only
al2 ha

if there are classes 1 and R such that (w1 r'
alpha' alpha'

wa apha is a subpath in a cycle in the conflict graph

(where j runs in class J). In this case, we say that

RJ  must run protocol P2 against classes I and I at
alpha -..

DMalpha If protocol P2 is used, then Ra need not runalpha alpha -.

protocol P3 against I and 1, as would normally be

indicated by the diagonal edges. Since P2 prevents Rj

alpha

from observing transactions in i and 1 in reverse

timestamp order, Ra will not interfere withalpha 7
serializing transactions in I and in timestamp order, as

desired.

0-3
To run Ri under P2 against I and M, Duata.mus

alpha apams

ensure that, at the time Rj  is processed, there is a
alpha s o e ti

timestamp TS such that all WRITE messages from classes I
01

and whose timestamps are less than TS have been

- . .. . . - - .i - - . . ... ., , ., . . . ..
' - "-" ." - "- i ." -" ' . - . " ' " ' " . ..• - . ; T • , .. - ' , , , , , , ' -
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4,O

processed at DMalpha' and no WRITE messages from classes i

and R whose timestamps are greater that TS have been
0

processed. The specific timestamp, TS0 , is not given by

the READ message RJ but rather is selected by DMalpha .alpha apa

As long as there exists some TS through which WRITEs from
0

the classes 1 and j ,,ave been processed but beyond which

they have not been processed, then Rj  will only be' alpha ii

able to observe transactions in classes I dnd k to have

been run in their relative timestamp order.

The implementation of protocol P2 requires an extension to

the read condition mechanism. Since the DM is expected to

choose a convenient TS0  (cf. P3 where the timestamp is

prespecified in the READ message), the timestamping in the

read condition cannot be determined until the READ message

is processed. So, a named timestamp marker may be

supplied in place of a particular timestamp in the read

condition. Whenever a DM encounters a timestamp marker in

a read condition, it may choose an appropriate time

itself, with the proviso that when two or more read

conditions are given for a single READ message, all

timestamp markers with the same name must be assigned the

same timestamp value.

For RJ to run P2 against classes I and pha'S
alpha aldha

READ message must include two read conditions, (TSM, 30
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and <TSM, 3>, where TSM is a timestamp marker. By

satisfying the read conditions, DMalpha fulfills the

protocol P2 condition against classes ! and , as desired.

It is interesting to note that protocol P2 is strictly

weaker than P3 in the following sense. If RJ  runs P3
alpha

against classes I and I at DM then Rj  satisfiesalpha' alpha

the P2 constraint against 1 and I as well. The converse

is not true. Since P2 always permits more concurrency

than P3, it is always advantageous to run P2 in place of

P3 where ever possible.

An example will illustrate the use of protocol P2.

Suppose there are two data items of interest, x and y,

which reside at both DMalpha and DMbeta; initially x:O and

y:O. We assume there is an integrity constraint requiring

2that y.x2 . Three classes have been defined. Class I runs

at TMalpha, reads x from DMalpha and writes x. Class j

runs at TMalpha, reads x from DMpha and writes y. Class

runs at TMbeta' and reads x and y from DMbeta* A class

conflict graph for this configuration is shown in figure

2.10. Nctice that a cycle is present and that

transactions in class J must run P3 against transactions

in class I at DMalpha and that transactions in class "

must run protocol P2 against classes I and 3 at DMbeta.

-b .
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0

Class: .
Transaction
Module: Thq TM,( TM1

Readset: (x) from DM (X) from DM .xY) from DM
Writeset: ((Y) "-

Tk
Graph: r OK r .-

e=

e ek

r -t / , I "..

wVW W 4T WT

Figure 2.10 - Class Conflict Graph for Example in Section 2.13

----------------------------------------------------------

Transaction i is received at TMalpha' requests to perform

* the computation x x+1, is assigned to class i, and is

given timestamp TS i. Transaction j is received at

TMalpha, requests to perform y := x2  is assigned to class 2
3, and is given timestamp TSj>TS i  Transaction k is

received at TMbeta , requests to print the values of x and

y on the user's terminal, is assigned to class 1 , and is

.; given timestamp TSk>TSj. Notice that each of these

transactions preserve the constraint that y < x2. No

-, .....-.-....., , .... ..
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serial ordering of the transactions could invalidate this

condition.

First, we consider an anomalous scenario in which

transaction k does not run protocol P2 as is required:

1. TM sends a READ message to DMalpha foralpha alpha

transaction i and retrieves x=O.

2. TM sends WRITE messages to DMalpha and DMbeta
alpha apabt

for transaction i. Each WRITE message contains

timestamp TS. and the assignment x 1.

DMalpha processes the WRITE for transaction i (but

DM has not yet done so).
beta

4. TM sends a NULLWRITE message for class i withalpha

timestamp TSi, > TS. to DMalpha *

5. TMalpha sends a READ message to DMalpha for

transaction j and retrieves x:1. (The P3 read

condition on this READ message is immediately

satisfied because of the previously received

NULLWRITE message.)

6. TMalh sends WRITE messages to DMalh and DMbt

for transaction j. Each WRITE message contains

timestamp TS. ard the assignment y 1.
i3
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7. DMaph a processes j's WRITE message.

8. DMbeta processes j's WRITE message.

9. TMbeta sends a READ message to DMbeta for

transaction k, retrieving x=O, y=1.

10. Transaction k prints x:O, y=1 on the user's

terminal.

11. DMbeta processes the WRITE message from i,

thereby setting x=1.

The user has seen an impossible state of the database

(i.e., x:O, y=1) printed by transaction k, with y > x2 .

The problem is that k is reading both the input and output

of another transaction, j. However, k is reading the new

value of the output but an old value of the input on which

that output is based.

If k had run protocol P2 as required, then this situation

" could not have occurred. By replacing steps (9)-(11) with

the following, we obtain a correct scenario in which k

satisfies P2.

9. TM sends a READ message to DM for
beta beta

transaction k. The P2 read condition requires that

WRITE's from classes i and 3 .e processed through

some common time. Now -_s been processed through
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time TS but class i has not been processed through

that time yet.

10. DMbeta processes the WRITE message for i.

11. A NULLWRITE message arrives at DMbeta for class -

with timestamp TSi ,>TSj.

12. DMbeta can now process the READ message from k,

since WRITE's from both I and " have been processed

through time TS. It retrieves x=1, y=1.

13. Transaction k prints x:1, y=1 at the user's

terminal.

Notice that it was not necessary for transaction k to use

protocol P3 to obtain a correct result. It only had to

wait until WRITE's from classes I and 3 had been processed

through time TSj, not through time TS (its own
k

timestamp).

• '1

p-
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2.14 Protocol P2f

Protocol P2f is quite similar to protocol P2. It is used

in cycles that contain a w-r-e-r-w subpath such as the

subpath r e r wet) shown in Figure-." sbpat (alpha' ralpha' ' beta' beta ""

" 2.11. The "f" in P2f refers to the fact that reading is

being done from a forein DM. As in a P2 subpath, a

transaction in class 3 is able to observe an ordering of

transactions in classes i .... I; protocol P2f is designed

to ensure that the observed ordering is always the

timestamp ordering of the transactions. If the above

subpath is part of a cycle, then each transaction, j, in

class j must run P2f against T - DMalpha and R at DMbeta'

This means that there must be a timestamp, say TSo, such

that all WRITE messages from I timestamped before TS and
0

none timestamped after TSo are processed before RJIpha at

DMalpha, and all WRITE messages from l timestamped before

TS and none timestamped after TSo  are processed before
00

R eta DMbeta Protocol P2f essentially runs half of P2 ---

(against I) at one DM and half of P2 (against ) at

another DM.141
I.
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r J r Jroe r .

3 3e k k

e e

WO W wi wj

Figure 2.11 - A w-r-e-r-w subpath calls for the use of
protocol P2-F when it forms part of a cycle

Since reading is being done from two separate DM's, it is

not possible to use the timestamp marker mechanism. (If

timestamp markers were used, it would be necessary for the

two DM's involved to carry on a conversation to determine

a mutually satisfactory timestamp to substitute for the

marker. This kind of synchronization overhead is exactly

what we are trying to avoid.) Instead, the TM issuing the

READ messages chooses a timestamp (i.e., TSo above) and
0q

includes a read condition on each READ with this S

timestamp. That is, if 3 must run P2f against I at

DMalph a and at DM beta then a transaction j in class 3

includes the read condition <TS0 , I> in Rj  and <TS o -
alpha

V ..-- .. ,
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> in Reta for some chosen value of TS o . Unfortunately,
choosing a TS for P2f is not quite as nice as using

0

timestamp markers in P2, because the P2f READ messages

have a greater likelihood of being rejected or having to

wait. The primary difference between read conditions

issued as part of protocol P3 and those issued as part of

protocol P2f is that the read condition timestamp for

protocol P3 must be the same as the timestamp of the

issuing transaction while the read condition timestamp for

protocol P2f may have any value.

.
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2.15 Protocol P1

If a transaction class appears in the graph but does not

run one of protocols P2, P2f, or P3, then we say it runs

protocol P1. That is to say, protocol P1 is the protocol

that involves no synchronization other than the data item

timestamping rule and the class pipelining rule.

P1, P2, P2f, and P3 provide a graduated set of mechanisms

in terms of concurrency and synchronization expense. A

goal in designing a particular application is to

distribute the data and define the classes to use the

lower numbered protocols most frequently.

I
" -1

*1

-°a
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Graph Topology Protocol Requirement

(the subpath shown
is part of a cycle)

Transactions in class i must
run protocol P2 with respect
to classes j and k.

w w-

e

Transactions in class i must

W-j Wrun protocol P2-F with respect
I to classes j and k.

Transactions in class Imust
run protocol P3 with respect

Sk" to classk

e "" " -

, "

Transactions in class I must

we 10run protocol P3 with respect to
I class j

Figure 2.12 Protocol requirements are suggested by the
graph topology

-- -- - -- -- - -- -- - -- - -- -- - -- -- - -- -- - -- -



SDD-1 Concurrency Control Mechanism Page -65-
The SDD-1 Architecture Section 2

2.16 Pre-Analysis of the Class Conflict Graph

Figure 2.12 summarizes the results so far, illustrating

how particular graph topologies indicate that particular

protocols must be run.

If it were necessary to compute graph edges and cycles

before executing each transaction, the cost of doing so

would clearly be prohibitive. Fortunately, this is not

necessary. The class definitions are specified by a DBA

at application design time and at that time the class

conflict graph can be computed and analyzed. The result

of such -n analysis will be a list of read conditions for

each class. Note that a class may have more than one or

two read conditions which it must use. This is because

the class may be a part of several cycles.

When a transaction is entered at a TM, the TM first

determines its read-set and write-set. It then determines

to which class that transaction belongs (if the

transaction can run in more than one class, the class with

the fewest synchronization requirements is chosen).
I ~Having identified the transaction's class, only a table -<°

lookup is required to determine what read conditions the

transaction must use.

[ . ' ,. .
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2.17 Safe Cycles

It happens that there are graph cycles which never cause a

non-serializable interleaving of transactions. In

particular, any cycle which does not contain a vertical .-

edge is always safe. Thus, a cycle composed entirely of

diagonal edges or entirely of horizontal edges will never

lead to a serializability problem and classes lying on

such cycles can safely run P1 (at least insofar as the

safe cycles are concerned). The cycle shown in Figure

2.13 is an example of a safe cycle.

---

* Figure 2.13 - A cycle is safe if it contains no vertical edges
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This result is not immediately apparent through intuitive

understanding and is illustrative of the fact that a more '07

formal and precise treatment of serializability criteria

is needed.

(Some intuitive understanding can be gained, however,

through the following arguments. First, if the cycle

consists entirely of horizontal edges then a

serializability problem cannot arise because horizontal

edges always imply a timestamp ordering of the

transactions. Second, if the cycle consists entirely of

diagonal edges then all the nodes on the cycle have the

same DM subscript. Also such a cycle consists of a series

of W-R-W subpaths. Remember from the discussion of

protocol P2 that on such a subpath the reading transaction

may observe a particular ordering of the writing

transactions and that the observed ordering depends on the

actual order in which the WRITEs were processed by the DM.

Since all of the WRITEs on the cycle are being processed

by the same DM, it must be the case that the reading

transactions all observe the same relative ordering among

the writing transactions and hence all transactions on the

cycle will be serializable.)
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2.18 Summary and Conclusionsii --

,- In reviewing the concepts presented in section 2, it is

helpful to distinguish between three kinds of properties

of an SDD-1 system:

1. properties that are intrinsic to the way the SDD-1

software operates;

2. properties that arise from database design

decisions.

3. properties that arise from the analysis of the

database design.

In category (1) are the way data modules process READ

. messages and WRITE messages, the way clocks operate, the

- pipelining rules, and the way each protocol works. In

category (2) are the choice of the location of SDD-1 sites

on the network, the choice of logical fragments, the

location of physical fragments, the configuration of

materializations, the choice of read-sets and write-sets

for each class, and the assignment of materializations to

each class. Finally, in category (3) is the assignment of

protocols to each class.
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The description we have presented of the SDD-1 redundant

update mechanism has a serious defect. We have shown that

certain situations cause serializability problems and have ---".-

introduced mechanisms to resolve those problems. Yet how

can we be sure that we have identified all possible

dangerous situations? And how can we be sure that the

protocols prevent all possible instances of these

dangerous situations?

We believe that in order to fully understand these

results, to be confident of their correctness, and to use

them intelligently in designing systems, we must prove

their correctness in a precise and formal manner. This is

the purpose of the Sections 3 and 4.

• ,o ,-.
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3. Selection and Analysis of Protocols

3.1 Logs

To develop the criteria for selecting a protocol for each

class, we need a formal model for transaction processing.

The model we have chosen, called logs, consists of a

string of symbols that represents the execution of

transactions, READ messages, and WRITE messages. Our

claim will be that logs embody all of the information

about system execution that is needed to reproduce its

input-output behavior. Verifying this claim will permit

us to use logs as a formal model for investigating other

aspects of the behavior of SDD-1.

There are three kinds of events that are of interest for

building logs READ messages, WRITE messages, and local
0

transaction execution. We represent the processing of a

READ message for a transaction, a, at a data module,

alpha, by Ralpha* We represent the processing of a WRITE

message for a transaction, a, at a data module, alpha, by

• " " . - o- . .* .
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Wa Finally, we represent the local execution of aalpha ' """

a
transaction (in its transaction module), a, by Ea . In the

sequel, we will use lower case Roman letters near the

beginning of the alphabet to represent transactions, and

lower case Greek letters near the beginning of the

alphabet to represent data modules.

The behavior of each data module is modelled as a string

of R's and W's, which represents the order in which READ

messages and WRITE messages were processed (as opposed to

received) by the data module. We call such a string a

local data module Io_. Each local data module log must

obey certain syntactic constraints that represent physical

properties that data modules must satisfy. In a local

data module log, say for data module alpha, the following

must hold:

D1. All R's and W's must have the same subscript,

alpha, since they are all processed at data module

alpha.

D2. For each transaction, a, at most one Ralpha
W a

and one alpha can appear, since each transaction

can send at most one READ and one WRITE message to

any given data module.

. . . . . .. . -. . . .
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The behavior of classes is modelled as a string of E's

called a global transaction log, which represents the

order in which transactions were executed as reflected by

their timestamps. The only syntactic constraint on a

global transaction log is

El. For each transaction, a, only one Ea appears,

since a transaction receives only one timestamp.

A global transaction log induces certain additional

syntactic restrictions on a local data module log, which

indicate the proper orderings based on the pipelining

rules. In a local data module log, say for data module

alpha, the following must hold: if transaction a and

transaction a' run in the same class and Ea ,recedes Ea

in the global transaction log, then

D3. (R-R pipelining) If Ra and Rah appear,
alphapha

then Ra precedes Ra
alpha Walpha'

D4. (W-W pipelining) If Wa and appear,• ~~~alpha a Wapha aper-,

then Walpha precedes Ral

la alpha ap
a apethen Wa  precedes R_alpha Ralpha'
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A log models an execution history of transactions on the

database.

To obtain a complete picture of the effect that logs have

on the database, we require the following additional -.

information, relating to database design:

for each transaction - the read-set of the transaction,

the write-set of the transaction, and the class in

which the transaction ran;

for each data module - the set of physical fragments

that is stored there; and

for each class - the materialization it uses for

reading.

For the sake of economy of the model and to enhance

mathematical tractability, we will normally leave the

transactions uninterpreted (in the sense of the program I
schema theory [Manna]). That is, for each logical data

item in the write-set of each transaction, we associate a

unique uninterpreted function letter that maps all of the

read-set into that write-set data item.

Given the above database design information, we must add

two more syntactic constraints on local data module logs

that guarantee that all of the relevant READ and WRITE
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messages are actually issued. If Ea _ppears in the global

transaction log, then

1. If some ,ata item in the read-set of transaction a

is obtained by the materialization of the class

under which trinsaction a runs from data module

alpha, then Ra appears in alpha's local dataalpha. _

module log.

2. If some data in the write-set of transaction a is

stored at data module alpha, then Wa appears in
alpha

alpha's local data module log.

In addition to these syntactic constraints, there is the

obvious semantic constraint that the logs accurately

represent the order in which R's and W's (in the case of a

local data module logs) or E's (in a global transaction

log) actually were processed.

Suppose we have a global transaction log and a collection

of local data module logj that represent the execution of

the system during soiic period. These logs can be merged

into a single global system log by satisfying the

following conditions: -

.-
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GI. All symbols in the global transaction log

appear in the global system log and appear in the

same order (e.g., if Ea precedes Eb the global

transaction log, then Ea and Eb appear in the V

global system log and Ea precedes Eb)

G2. For each local data module log, all symbols in

the local log appear in the global system log and

appear in the same order.

G3. For each transaction, a, and for each data

amodule, alpha, if Ra pha appears in the global

system log then Ea also appears in the global

system log and Ra precedes Eaalpha p E

G4. For each transaction, a, and for each data

module, alpha, if W alpha appears in the global

system log then E a also appears in the global

system log and E a precedes Wa

Given a global log and its associated database design

information, we would like to show that this model is

sufficiently powerful to reproduce the essential aspects

of SDD-1 operation.
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Claim C The log model of SDD-1 operation is complete in

the spse that given an initial value for all data items

in the datpbase, a log, and an interpretation of the

function syrbols for transactions, then there is a

mechanical procedure that could analyze the log and

reproduce the exac, value history of each stored data item

at each data module.

The essence of claim of C is that timestamping information

for transactions and the parameters of READ and WRITE

messages are not needed in order to duplicate the actual

operation of the system, given that the log and associated

transaction and data distribution information is provided.

To prove this claim formally, we would need a formal model

for the operation of SDD-1 (at the level, say, of a RAM or

Turing machine) and a formal model of logs. Then we would

need to show an isomorphism between the value histories of

all stored data items of each model. We will not perform

this tedious task. RPher we will demonstrate an

interpreter that caro .'4iulate SDD-1's operation with only

the information available in logs and the associated

transactj-', and data distribution information. We argue

along intuitive lines only that the interpreter is indeed

simulating correctl,.

~~-7:
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The interpreter maintains a simulated physical copy of

each stored data item in each data module. Instead of

storing a timestamp with each stored data item, we

associate the transaction name of the last transaction .

that successfully wrote into that data item. Given the

total ordering of E's in the global system log, this

"transaction label" will be sufficient to reproduce all of

the essential timestamping information in the system.

Given the database design information, we can obtain the

read-set and write-set associated with each R and W in the

log. We also assume that for each uninterpreted function

letter in a transaction there is an interpretation (i.e. a

program).

Now, to execute a global system log, the interpreter

begins by initializing all stored data items to their

initial state and their associated transaction labels to

NULL. It then selects log symbols, one at a time

proceeding from left to right; for each symbol it does the

following:

i. If the symbol is a read, say Ra then read -,

that portion of the read-set of transaction a that is

stored at data module alpha according to the

materialization of the class in which transaction a

executes. Store these values in a temporary work

space associated with transaction a.
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a
ii. If the symbol is an E, say E , execute the

interpretation of transaction a on the read-set

value- stored in its workspace. The resulting

write-sti values should be stored back into its

workspace.

iii. If the symbol is a write, say Walpha then for

each data item in the write-set of transaction a that

also is stored at data module alpha, take the value

of the data item and store it in the stored data item

at alpha with transaction label a if and only if

one of the following holds:

1. the transaction label for the data item at

alpha is NULL; or

2. the transaction label for the data item at

Eb a
alpha is some b where E precedes E in the

global system log.

First, notice that t.rie parameters (i.e. conditions) of

read messages are not needed, in that the global system

log alrergy specifies exactly which WRITE messages are

processed ahead of each READ message. Second, the it

conditions for perfirming WRITE messages are exactly those

induced by the tlmertamping rules. The use of ordered E's

the log to embody timestamping information is a crucial
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conceptual simplification that makes the proofs in later

sections possible. Were we forced to use actual

timestamps instead, the notation would be much more

difficult to understand and manipulate.

- 3.2 Correctness Criteria

To determine how to assign protocols to classes to yield

correct system operation, we must first develop precise

'. conditions for correct system operation. We define two

conditions that characterize the correctness of

distributed database systems such as SDD-1. One

• .condition, called convergence, states that all copies of

each logical data item must be "converging" toward the

same value. The other condition, called serial

reRroducibilit_, essentially states that the values toward

which the database is converging are mutually consistent.

We proceed more formally with a discussion of each of

*i these criteria.

...0
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3.2.1 Con'ergence

A log is conver,-ent if, given a database state in which

all stored copies of each data item are equivalent, then

the log transforms that state into another state with the

same property. (In the sequel, we use "log" to mean

"global system log".) A system is convergent if all of

the logs it can generate are convergent. One way to look

at system convergence is to imagine that if the processing

of E's were to stop at any time and all WRITE messages for

completed E's were processed, then the resulting log would

be convergent.

Theorem CONV Let L be a log generated by SDD-1. If for

each E in L all of E's WRITE messages are in L, then L is

convergent.

Proof Consider an a-bit, ary logical data item, x, and let

Ea be the last transaction execution which has x in its

write-set. Since all write messages for transaction a are

eventually processed (by hypothesis), for each data

mc ule, alpha, that has a stored copy of x, Wa will be
alpha wilb

the last WRITE mes3age in L that successfully updates x.

Hence, all copies of x will be equivalent. Q.E.D.

-" - - - -
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Corollary SDD-1 is convergent.

3.2.2 Serial Reproducibility S

We define two logs, LI and L2, to be equivalent if for all

initial database states and for all interpretations of the

transactions, LI and L2 leave the database in the same

final state. In a log L, we say that a READ message-

Ra reads from a message Wb ifapaalpha if.ii

i. There is a stored data item x at alpha that is

in the read-set of a and the write-set of b; and

b a
ii. Walpha precedes Ra in L; andal h alpha i ; a di]i..

iii. successfully updates x when it isalpha b "
processed (i.e., E appears later in L than x's

current transaction label when Wb is processed);alpha ispoese)

and

b.
iv. There is no c such that W follows Wb

alh alpha']

Wc and precedes Ra in L, and W successfully
alpha alpha

b
writes into x (i.e., Wa is the last writeapha

operation into x before Ra
apha).

The notion of "reading from" characterizes log equivalence

in the following sense.

L. .. .A , -, . i - " , .. . , , .: . . . - ". . . . ,
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Theorem E Let LI and L2 be logs that contain the same set

of transactions. If every R reads each of its data items

from the same W in both LI and L2, then Li is equivalent

to L2.

Proof The proof uses Herbrand interpretations to show that

each data item displays the same final value in both logs.

This is a standard program schema theoretic result and can

be found (for example) in [MANNA].

Theorem E can be extended to be both a necessary and

sufficient condition for equivalence by incorporating the

notion of "deadness" as in [Papadimitriou et all.

However, for later results, we only need the sufficient

condition for equivalence.

We define a log to be serial if for each transaction a in

the log, all R a symbols immediatel precede Ea and all Wa

symbols immediately follow Ea That is, a serial log is

of the form:

a a awa a b b Ebwb
alpha- R'omegaE alpha'Womega Ralpha-'R omegaW alpha

W Rc Rc Ec Wc Womega alpha "'" omega alpha "'" omega

A log is serially reroducible if it is equivalent to a

serial log. A stem is safe if all of the logs it can

generate are serially reproducible. The use of serial

reproducibility as a correctness criterion has been used
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by many researchers [ESWARN et all, [GRAY et all, and l

[HEWITT] and arises from the following model. Our goal is

to show that the database is maintained in a "consistent"

state, where "consistency" is characterized, say, by a -*

predicate which is true for all consistent states. We

assume that every transaction preserves the consistency of

the database: given a copy of its read-set that is

consistent then it will produce a copy of its write-set

that is also consistent. Clearly, every serial log

preserves database consistency if each of its transactions

preserves database consistency; in this case, all data

items are updated cosynchronously, because all WRITE

messages of a transaction are processed before the next -.

READ message is processed. Since a serially reproducible

log is equivalent to a serial log, serially reproducible

logs preserve consistency as well.

SDD-I guarantees serial reproducibility by the rules that

govern the selection of protocols for classes. That is,

if every class executes all of its transactions according

to the prespecified protocols, then the log of all

transactions executed by all classes is serially

reproducible. In the remainder of Section 3 we will

develop these protocol selection rules. In Section 4 we

will prove that they do in fact make SDD-1 logs serially

reproducible.

-A
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o

3.3 Log Transformations

To determine if a log is serially reproducible, we will

define an effective procedure to transform a log into an

equivalent serial one. The procedure is based on

equivalence preserving transformations on logs. These

transformations are in the form of "switching rules",

i.e., equivalence preserving rules for switching adjacent

log symbols. Each of the following switching rules is of

the form "... xl x2 ... _ ... x2 xl ... under condition

C", which means that if symbols xl and x2 are adjacent in

a log and they satisfy condition C, then they can be

switched and the resulting log is equivalent to the log

before the switch.

TRi ap. Ra Rb ... ... Rb Ralpha beta beta alpha

where a and b run in different classes

b b aTR2. R alpha beta = Rb RRb.. ... beta alpha

... where alpha g beta
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T R 3 a  EE b  E a  -TR3 ...... ... EE ... where a and b

run in different classes and have nonintersecting

write-sets.

TR14. .. b Wb Walpha Walpha "' alpha alpha

... if a and b run in different classes

TR5 ... Wa W : Wb aalpha beta "'" - beta alpha " .

if alpha i beta

TR6. R.. Ra b W a

alpha beta ... . beta alpha

if alpha i beta

TR7. . Ra Wb Wb Raalpha alpha "'" alpha alpha
... if a and b run in different classes and there

is no stored data item at alpha that is common to

transaction a's read-set and transaction b's

write-set.

Theorem TR The transformations TRi - TR7 are sound, i.e.,

they preserve log equivalence.

Proof Follows directly from theorem E and the definitions

of the transformations. Q.E.D.

. . • .. ..
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We note in passing that the transformations TRI - TR7 are

in no sense complete with respect to equivalence. That

is, given two equivalent logs, Li and L2, there may be no

sequence of applications of TR1-TR7 to Li that yields L2.

There are several reasons for this. First, all of the 0

transformations prese-ve the pipelining rules in addition

to equivalence, which thereby weakens them. Second, the

transformations preserve certain timing information, which

in some cases is not needed to preserve equivalence.

Finally, pairwise switching is not sufficient to handle

all equivalence situations; logs can be constructed which

have entire sublogs that can be switched in an equivalence - -

preserving way, such that no sequence of pairwise switches

can reproduce the sublog switch. These observations are

parenthetical to the results that follow, since the

soundness of TRI - TR7 is all that is required.

La

.i-pg
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3.4 Conflict Graphs

From TRI - TR7 we can derive the set of invalid switches,

i.e., those switches that are not permitted by TR1 - TR7.

These invalid switches correspond to potential conflicts

between transactions and, as we will see, can lead to

non-serially reproducible logs. The invalid switches, -. -

called conflicts, are:

a bNTR1. Rh R a where a and b run in

the same class.

NTR2 .. Wa ha Walha "'" where a and b run in

the same class.

N 3Ra b b a .?.- '
. . Ralpha Walpha ... or Walpha Ralpha

... where either a and b run in the same class or

there is a stored data item at alpha that is common

to transaction a's read-set and transaction b's

write-set.
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NTR4 Rlpha Ea ...

. ... ~ ap a " "--

NTR5. E Wa a.... alpha "'

NTR6 .... Ea Eb where a and b run in the same

class or have intersecting write-sets.

It is easily checked that these are the only pairs that

cannot be switched using TRI - TR7.

The above conflicts can be modelled by a node-labelled

undirected graph whose nodes represent generic log symbols

and whose edges represent potential conflicts between log

symbols. The graph is defined over a finite set of

classes, denoted {a,, . .}, and associated with each

class is a read-set, a write-set, and a materialization.

We define a conflict graph CG <V,E> as follows (it

denotes set union):

V = {ea: all classes } + {r alpha: all classes
apa

and all data modules alphal + {wa all classes
lpha

a and all data modules alpha}

E=vert +Ehori z +Ediag



SDD-I Concurrency Control Mechanism Page -89-
Selection and Analysis of Protocols Section 3

Vert (ralpha' e : all classes a and all data

modules alpha} + {(e, walpha all classes and

all data modules alpha}

Eho : {(e e ) all classes a,b where the

write-sets of a and b have a nonempty intersection)

Edg {(r -a b
diag alpha' alpha) all classes a,b and all

data modules alpha such that the portion of B's

write-set stored at alpha has a nonempty

intersection with the portion of 5's read-set which

is stored at alpha under a's materializationI

The notions of vertical, horizontal and diagonal edges

derive from the following convention for drawing conflict

graphs. For each class a, we draw all of a's r nodes in a

row, beneath which we uraw a's e node, beneath which we

draw a's w nodes in a row. (See figure 2.2.) The Evert

edges connect each e to all of its r's and w's; these

edges are (in a manner of speaking) vertica. Groups of

nodes for different classes are arranged in a row (see

figure 2.3). The E hori z edges connecting e's in different

classes are therefore horizontal, and the E edges
diag

connecting an R and W from different classes are diagonal.

We have found these conventions to be very convenient when

discussing conflict graphs.
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3.5 Protocol Selection Rules

A conflict graph -ycle that contains a vertical edge can

lead to a nonserializable log, because the edges of the

cycle can correspond to conflicting (and hence 0

unswitchable) symbols in the log. The rules for selecting

which protocols to use for each READ message in each class

are built around cycles in the conflict graph. We

conclude Section 3 by enumerating these rules. In Section

4 we prove that if all transactions obey these rules, then

all logs are serially reproducible. The rules are:

a
PSR3. If ralpha lies on a c e in the conflict graph and

b a a
the cycle contains the subpath (w walpha, ralpha, ebeta )

or the sub (wpha pha ea ec) for some classes 5 and

and some data module beta, then for each transaction a

in run Ralpha under protocol P3 with respect to B.

a aPSR2F. If ra a and r beta lie on a cycle in the conflict

graph and Lne cycle contains the subpath (web ra
beta' beta'

ea ra c
alpha' Walpha) for some classes arid C, then for

each transaction a 'n -I, run Ra and a under

alpha Rbeta

protocol schema P2F against .t beta and against E at

a
alpha.
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PSR2. If r lies on a cycle in the conflict graph and
alpha

the cycle both contains a vertical edge and contains the

subpath (walph a , ralpha' alpha
-afor each transaction a in a, run Ralpha under protocol P2

against b and e at alpha.

These protocols must be satisfied for all cycles in the

conflict graph. That is, if an r lies on several cycles S

and thereby satisfies several of the PSRs, then that READ

message must include conditions to satisfy all of its

PSRs. If an r satisfies none of the above PSRs, either

because it lies on no cycles or because none of the cycles

on which it lies have the undesirable properties, then

that r can run protocol P1. It is expected that under a r

suitable database design and for many applications, most

transactions need only run under protocol schema P1.

Theorem SR If all of the trarsactions in a log use the

correct protocol as outlined by the protocol selection

rules, then the log is serially reproducible.

Proof See Section 4.

Corollary SDD-1 is safe.

--I
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4. Proof of Serial Reproducibility

. ,. - 7 -

4.1 Introduction

This section contains a proof of theorem SR, which

demonstrates that the SDD-1 protocol selection rules lead

to serially reproducible logs. Since the proof is rather ,

long and its details may not be of interest to all

readers, we will first present a brief overview of the

proof. To prove the theorem formally, we need to

formalize the concepts of the previous sections. This

formalism is presented in Section 4.2. The proof itself

comes in two parts and is presented in Sections 4.3 and

4.4. - ..

This proof only includes protocols P1, P2, P2f, and P3. A

proof that also embodies protocol P4 has been produced and

will appear in a later report.

To prove that all logs are serially reproducible, we -

assume the converse and show a contradiction. That is, we

assume that there is some log, say LOG given, which

4- " -
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resulted from the correct operation of SDD-1 and that

LOG is not serially reproducible. The general
given

approach we will take is to try to serialize LOGgiven

using the transformations TRI - TR7. When we get stuck,

as we must since LOG gie s not serially reproducible, wegiven

examine the "stuck" log and derive from the log certain

properties of the conflict graph that demonstrate that

LOGiven must have violated the protocol selection rules

(PSRs). Thus, the proof proceeds in two stages: first,

the attempt to serialize LOGgiven; second, the

construction of the PSR contradiction.

To serialize LOG we begin at the left end of the loggiven,

and try to serialize each R so that it is adjacent to its

corresponding E and each W so that it is adjacent to its

corresponding E. Suppose, for example, that we are trying w'.

. to serialize a a By
Ro alpha to be adjacent to Ea  y applying

switches permitted by TRI - TR7 of adjacent symbols in the

sublog that separate Ra from Ea we try to move a= ~alpha , etyt oealpha

- . closer to Ea That is, we try to move each symbol in this

sublog either to the left of Ra or to the right of Ea, ~~~~~~~~alpha o otergto .,=.

If we can move all of the symbols in this sublog out of

the way, then we will end up with Rlpha adjacent to Ea

We can apply essentially the same procedure to move each

Wa to be adjacent to Ea
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Since LOGgiven is not serially reproducible, this
procedure that tries to serialize LOGv will eventually

* givenw
fail to be able to serialize some R or W. Suppose that

a aRa-a cannot be serialized with E. Then we have a
alph

sublog of the form Ra Ea in which every
alpha

intermediate symbol is in conflict with some symbol both

on its right and on its left, since otherwise the symbol

would have been removed by the above applications of TRI -

TR7. Similarly, had we gotten stuck by a W we would
alpha' w ol

have obtained a sublog Ea ... Wa with the same""alphawth hesm

property. Finding this blocked sublog completes the first

- stage of the proof.

Suppose, again, that the blocked sublog is RaE a.alpha-
The second stage of the proof begins with the observation

that since every symbol in the sublog conflicts with some

symbol on its left and right in the sublog and since every

conflict corresponds to an edge in the conflict graph,

then there is a path from Ra to Ea in the conflictalpha t

graph. Furthermore, we know that the edge (Rai- E a ) is_ _al a'lpha

in Evert , hence completing a cycle. Since Ra lies on
vert apha i.

a cycle, it is subject to the PSRs. By analyzing the

blocked sublog in more detail, enumerating the possible

symbols that could be Ralpha's conflicting right neighbor

and those that could be Ea's conflicting left neighbor, we

show that in each and every case either Ra violated a

alpha
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protocol it was supposed to use according to the PSRs or

that LOG given must have violated one of the pipelining

rules. The conclusion, then, must be that this blocked

sublog could not have arisen in the process of trying to

serialize LOGgiven• The very same kind of argument can be

.a aapplied if the blocked sublog E ... W had resulted
alpha

from stage one. So, the attempt to serialize must L.a

inevitably succeed and LOGgiven is serially reproducible.

There are numerous pitfalls in this line of proof that

require a rigorous approach to be taken. We proceed, now,

with this rigorous development.

. . . .. .

.. -.,.

7'.... . . . ..

4"q '
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-' 4.2 A Formal Model for SDD-1

4.2.1 A Database Design

* A database design for SDD-1 is a ten-tuple

D (DELTA, KAPPA, LAMBDA, SIGMA, MATZN, logical,

A matzn-of-class, stored-data, readset, writeset>

where the components of' D are defined as follows (upper

case components are sets and lower case components are *

functions):

1. DELTA = [alpha, beta, gamma, delta,.... is the set

of' all data modules.

2. KAPPA = is the set of' all classes.

3.LAMBDA is the set of' all logical fragments.

.44*
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4. SIGMA is the set of all stored fragments.

5. logical: SIGMA -> LAMBDA. Each stored fragment

sigma in SIGMA is a physical incarnation of some

logical fragment specified by logical(sigma).

6. MATZN = {matznj, matzn2 , matzn3 , ... } is the set of

all materializations. Each materialization is a

total function and matzn1 : LAMBDA -> SIGMA such

that for each lambda in LAMBDA,

logical(matzn (lambda)) = lambda.

7. matzn-of-class: KAPPA -> MATZN. Each class i in

KAPPA runs in some materialization, specified by

matzn-of-class3(i).

., 8. stored-data: SIGMA -> DELTA. Each stored fragment
sigma in SIGMA is stored at a data module,,

specified by stored-data(sigma).

9. readset: KAPPA -> 2 LAMBDA Each class i in KAPPA

has a readset that is a subset of LAMBDA, specified

by readset(i).

I

,?/:,,,,,, - -':,<..,,,,.,:. , :.,..., .. ..,..,.... ..... .....
, , ,,, .,: ;, , ..-. :..,,-,, ,: .. . .. . - ..- ' ' --".*. . .- . . . ... .- - -. -. :.-.. -. - .,
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10. writeset: KAPPA -> 2 LAMBDA Each class in

KAPPA has a writeset that is a subset of LAMBDA,

specified by writeset(5).

When designing a database, one has to specify data

distribution and class structure by specifying each of the

above ten components.

4.2.2 Logs

The execution of the system is completely characterized by
a log. Logs are built on transactions. We define a

transaction set over a database design D to be a

four-tuple TAU(D) <TN, transclass, transreadset,

transwriteset> where the components of TAU are: --

1. TN {a,b,c,d,.... is a set of transaction names.

2. transclass: TN -> KAPPA. Each transaction a in TN

runs in a single class specified by transclass(a).

3. transreadset: TN -> 2 LAMBDA Each transaction a

in TN has a readset that is a subset of LAMBDA,

specified by transreadset(a), such that

transreadset(a) is contained in

readset(transclass(a)).

.- -q2-

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .



SDD-1 Concurrency Control Mechanism Page -99-
Proof of Serial Reproducibility Section 4

4. transwriteset: TN -> 2LAMBDA
. Each transaction a

in TN has a writeset that is a subset of LAMBDA,

specified by transwriteset(a), such that

transwriteset(a) is contained in

writeset(transclass(a)).

A log is a string defined over a database design D and a

transaction set TAU. The symbols of a log, L, are

selected from the set ( +E + ('.+' is set union) where

{Ra  : all a in TN, all alpha in DELTA)alpha ..-.

{Ea : all a in TN"

: all a in TN, all alpha in DELTA).alpha

A well-formed log, L, satisfies the following

restrictions:

1. No element of + + appears more than once in

L. . '- -.

2. For each a in TN, if Ea appears in L then for all

alpha in DELTA:

i. if

matzn-of-class(transclass(a))(readset(transclass(a))

has a non-empty intersection with

stored-data l(alpha), then Ra  appears in L and
alpha

precedes Ea;* and

-... .
, , .-..- °
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ii. if transwriteset(a) has a nonempty intersection

with stored-data- 1 (alpha), then Wa ""
alpha .ppears 

in

and E precedes Wa (Note: by "precedes" we-' alpha*

mean "appears somewhere in the string to the left

of" .)

A well-formed log, L, satisfies the pipelining rules if

for each a and a' where E precedes E in L and

transclass(a) = transclass(a') then

1. (R-R rule) for each alpha in DELTA where Ra andalphaan

Ra' are both in L Ra a-e-d.s:alpha alpha Ralpha

2. (W-W rule) for each alpha in DELTA where Walpha and'" W[pha Wa  recees alph a

a' atWal are both in L, W precedes Walph alpha alpha

3. (W-R rule) for each alpha in DELTA where Walpha and

R a' are both in L, a precedes aalpha Walpha Ralpha*

-; --" -, - - - - - - - - - - -- - - - - -.

* This definition implies a READ message is sent to alpha
if the materialization obtains part of the class read-set
from alpha, even if the particular transaction does not
read any data from alpha. In the implementation of SDD-1,
read conditions make it possible to avoid sending the READ
messages in the ?.atter case, by adding extra read

* conditions to the next READ message that goes to alpha
from transclass(a).

• " "-°
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A system is well-formed and satisfies the pipelining rules

if all of the logs it can generate have these properties.

Unless explicitly stated otherwise, in the sequel we

assume that all logs are well-formed and satisfy the

pipelining rules.

4.2.3 Conflict Graphs

We redefine conflict graphs, the protocols, and the

protocol selection rules in terms of the above formalism.

A conflict graph

CG(D) <VERTICES, EDGES>

is a vertex-labelled undirected graph defined over a

database design D as follows:

VERTICES rlpha: all a in KAPPA, all alpha in DELTA) +

wa

{ea all in KAPPA} + ,....

{ alpha: all a in KAPPA, all alpha in DELTA}

EDGES EDGESvert + EDGESh + EDGESdia.

ethoriz +

EDGES
vert

[(ra ea): all 5 in KAPPA, all alpha in DELTA)alpha'

+ lea Wa): all a in KAPPA, all alpha in DELTA}
, pha
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EDGEShoriz Ce , and the intersection of

writeset(;)*and writeset(B) is nonempty}

a b
EDGESdiag {(ralpha, a lph

and the three-way intersection of

matzn-of-class( )(readset(5)) and

logical -1 (writeset(B)) and stored-data-1 (alpha)

is nonempty)A

So-J

In a conflict graph, CG(D), a path is a sequence (al, a2 ,

a ) where for each i, 1 < i <n, (ai, ai+1) is an

edge of CG(D). If a1  an and no edge appears twice in L

the path, then the path is called a cycle.

An edge (ai, a.) in CG(D) is called heterogeneous if the

two nodes have different superscripts (i.e., are in

different classes). A path (or cycle) is nonredundant if

each class is a superscript in at most two heterogeneous

edges in the path (or cycle).

I.'.-" -

. . . .

. . . . . . . . . .. . .
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4.2.4 Protocols and Protocol Selection Rules

The protocols are now defined purely in terms of logs.

The timestamping mechanisms described in Section 2 can be

thought of as a method of implementing the protocols.

A read operation Ra satisfies protocol P2 in log L
alpha

with respect to classes { } in KAPPA if there

exists a transaction b such that Ra lpha satisfies the

"partitioned writes property" with respect to E b and

{a1' 'an }  A read operation Ra satisfies the
1.-.;n alphasaife th

partitioned writes property with respect to Eb and

{al...'an} in log L if for each transaction c with Ec in

L and transclass(c) in {a,.."

1. If Ec precedes Eb and Wc pears in L, then
alpha ap

a precedes Ralpha in L; and

2. If (b c or Eb precedes Ec) and W a a appears in

L, then Ra pha precedes Walpha

a aTwo read operations Ralpha and Rbeta satisfy protocol P2f

with respect to classes { 1,...,m} and {"m+1,...,an}"

(respectively) in log L if there exists a transaction, b,

. -.-- -

* J ,- . . ~ . •~
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such that satisfies the partitioned writes property

Ralpha

with respect to Eb and [a''...,m and Ra eta satisfies the

partitioned writes property with respect to Eb and

_ m+1'''' n
a9

A read operation Ralpha satisfies protocol P3 with respectalh

to {a1,...,5n} in log L if it satisfies the partitioned

writes property with respect to Ea and { 1,...,f ).

Two remarks should be made regarding these protocols.

First, the protocols are mutually compatible in the - -

- following sense: if Ra satisfies protocol P3 with
alpha

respect to and R satisfies protocol P3
1' m beta

with respect to {am+1 an}, then Ra and RaM+" n'' alpha beta

satisfy protocol P2f with respect to {a1 " and

{am+1 an}  (respectively) and Ra (for example)m ''.. '' alpha (o xm l ).

satisfies protocol P2 with respect to {a1,...am}. Second,

protocol P2 allows a single Ra to satisfy P2 withalpha t aif 2wt

- respect to two different sets of classes using two

different transaction b's. That is, Ra can satisfy P2
al1ph a

with respect to {al,''''anl because it satisfies the,.-:.1 ... 1-5.n--.
bpartitioned writes property with respect toE and

1, ...,an) while in the same log it satisfies P2 with

respect to {, m  because it satisfies the

partitioned writes property with respect to Eb and

{[1 ... m Yet, there may be no single E such that

.. . . . . . == . .==.................."... ".... ..- " '
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satisfies the partitioned writes property with
alpha

respect to both sets. This subtlety cannot be handled by

the read conditions described in Section 2 without some

modification.

We complete our formal model by defining the protocol

selection rules (abbr. PSRs). Let CG(D) be a conflict

graph over the design D and let L be a log defined over D

and transaction set TAU. Then L satisfies the 2rotocol

selection rules if each of the following hold:

PSR I. For all alpha in DELTA and a in TAU, if

ra (where a = transclass(a)) lies on aalpha
nonredundant cycle in CG(D) in a subpath of the

form (wb r a e a a or (w
alpha' alpha' beta o alpha'

ra a c
alpha' e e ) for some b C in KAPPA and beta in

DETte a  a :"
DELTA, then R is in L and Ra satisfies

alpha alpha

protocol P3 with respect to class b at alpha in L.

PSR 2. For all alpha, beta in DELTA and a in TAU,
if ra and ra (a transclass(a)) lie on a

alpha beta

nonredundant cycle in CG(D) in a subpath of the

Wbe( a a a ra c
form (beta rbeta, e ' ralpha Walpha), for some

and c in KAPPA (b c) , then Ra andalpha and eta "--

appear in L and Ra and satisfy protocoldIpha ad beta -''-...,

P2f with respect to {c, and {b} respectively in L.
p.!:: ?:
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PSR For all alpha in DELTA and a in TAU, if

ra
ralpha (a = transclass(a)) lies on a nonredundant

cycle that contains a vertical edge in CG(D) in a
b a c.

subpath of the form (w alpha' ralpha' Walpha)' for

asome b and c in KAPPA (b c), then R app""ralpha ppears

in L and Ra satisfies protocol P2 with respect
al1ph a

to ib, c} in L.

A system satisfies the protocol selection rules if for any

database design D and transaction set TAU, all logs

defined over D and TAU satisfy the protocol selection

rules.

4.3 Serialization

Theorem SR If a system is well-formed, satisfies the

pipelining rules, and satisfies the protocol selection

rules, then all logs that it can generate are serially

reproducible.

The first stage of the proof of this theorem is to develop

an algorithm, called the serialization procedure, that

attempts to serialize a given log. If the procedure gets

stuck, then certain conditions are shown to hold by lemma

S (the serialization lemma).

. . -.. . .

. . .. .
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b. *

4.3.1 Conflicts

We begin by defining a new log symbol, called a composite

atom, which is an adjacent group of symbols (R's, W's, and

an E) that all have the same superscript (i.e., all in the

same transaction) and include an E. The symbolic notation

for a composite atom is Aa Ctalpha_ 1 - R

Walpha(m+l*..Walphan ]  which is equivalent to the

sublog

Ra Ra  E a Wa a
alpha-i a E- alpha-(m+l) "alpha-n"

Frequently, we will simply write Aa for the composite

atom, as an abbreviation. Note that not all Rats and Was

that appear in a log must be members of Aa The only log

a asymbol that must be a member of A is E Also, note that

since for each transaction, a, no more than one Ea occurs

in a log, therefore only one Aa can appear in a log. The

introduction of composite atoms is simply a notational

convenience so that groups of symbols for a single

transaction can be handled as a unit.

We define an atom to be either a composite atom or an

isolated R or W that is not adjacent to its corresponding

. ,
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E (i.e. is not a member of a composite atom). In the

sequel, we assume that all logs consist of atoms. That

is, all E's are replaced by A's. To do this, the log

transformations, TRI - TR7, and conflicts, NTR1-NTR6, must

* be extended to handle A's. The extensions are direct

consequences of the original transformations and conflicts

and the definition of atom. Since we only need conflicts

in our proof, we will only extend conflicts and not bother

with the transformations. In the following, note that

composite atoms are never split up. The conflicts are:

NTR 1. ...Ra Rbhr rncasa
1 alpha alpha- where transclass(a)

transclass(b).

;, NTR 2 , . 9 Wa  bW il:

a b." alpha Walpha " where transclass(a)

transclass(b).

a b

3  alpha Walpha ... or
Wb  a , '"-
Wlpha Ralpha "'" ' where either transclass(a)alph -alpha/

transclass(b) or the three-way intersection of L.-4

matzn-of-class (transclass(a))(transreadset(a)) and

logical I(transwriteset(b)) and

stored-data -1 (alpha) is nonempty. V.

"J

~=1 °
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T4' alpha

NTR' AaWa5 alpha

NTR~t  A. A~ ... where at least one of

following hold:

i. transclass(a) =transclass(b), or

ii. transwriteset(a) and transwriteset(b) have

a non-empty intersection, or 1

iii* Ra 1 ~ is in Aa ndW pa is in Ab and

apa alphaalh

iv ba i nA n R sn A n
Wla alpha c onflict by alph or.

ab ad abi. Wbph is in a R alphais n A ad
alh Raph

clh paconflict by NTR 31or

a is in A b and tRascas a

R- -3 in- A and trn3ls
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NTR Ab ... oheba8 alpha or. ..r A.. alpha where

either

i b  Ab  b a :
1. Rb is in Ab and Rb Walpha alpha alpha

conflict by NTR 3 ' or
3

ii b  bS alpha is in A and transclass(a)

transclass(b).

Lemma C If a pair of adjacent atoms in log L are not in

conflict, then the log resulting from switching these

atoms is equivalent to L.

Proof Follows directly from Theorem TR in Section 3.3.
.-.-D4Q.E.D. .-.'-

...................
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4.3.2 Augmented Conflicts

In the second stage of the proof', we will frequently draw

contradictions regarding possible orderings of atoms in a"-.-L

log by appealing to certain protocols. However, after a

log has been partially serialized, many of the atoms will

no longer be in the same order in which they appeared in

the original log before any attempt was made at

serialization. Therefore, the fact that a partially

serialized log violates the PSRs does not necessarily

imply that the given log violates the PSRs. That is, it

is only the given log which, by hypothesis, must satisfy

the PSRs. Hence, we are unable to draw the desired

contradiction.

*, What we require is a proof mechanism to guarantee that

certain protocol violations in a partially serialized log

imply the same violations in the given log. To do this,

we introduce additional conflicts (called augmented

conflicts), so that while trying to serialize a given log, .7'

* we do not destroy some of the protocol information. These

additional conflicts can be reflected in additional edges

in the conflict graph (called augmented edges). We

proceed by defining these concepts formally.

S. ." . .



Page -112- SDD-1 C:ncurrency Control Mechanism
Section 4 Proof of Serial Reproducibility

All augmented conflicts are between pairs of E's. Since

we have replaced E's by A's for the purposes ot the proof,

we will state the augmented conflict rules in terms of

A's.

ANTR ... AaAb... if there is a transaction c in . -P 2

TAU (c i a, c i b) and an alpha in DELTA such that

Rc must (according to the PSRs) satisfy P2 withalpha
respect to transclass(a) and transclass(b) at

alpha.

ANTR 2 f: . .. A... if there is a transaction c in

TAU and alpha and beta in DELTA such that Rc
alpha

and Rc must (according to the PSRs) satisfy
beta

protocol P2f with respect to transclass(a) and

transclass(b) respectively.

ANTR ... AaAb ... if there is an alpha in DELTA
P3**

such that either Rlpha must (according to the

PSRs) run P3 with respect to B or Rb must
alpha

(according to the PSRs) run P3 with respect to

Two atoms are in augmented conflict if they conflict by

NTR 1 ' - NTR8' or by ANTR1 - ANTR3 .

.31

A-
-- . .,-...

4 5 . . -.. - ....

i..-,,,+'II' ;'°'~. . .... .. "" " . .. .. . .. " . .. ,i. "-' ,. " - - . . -'- 
,
"
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Corollary C-AUG If a pair of adjacent atoms are not in

augmented conflict in log L, the log resulting from

switching these atoms is equivalent to L.

Proof Follows immediately from lemma C. Q.E.D.

Each of the above conflicts must generate an edge in the

conflict graph. We define an augmented conflict graph,

ACG(D)=<VERTICES, EDGES + EDGES >, as a vertex labelled

undirected graph defined over database design D where

VERTICES and EDGES are identical to those in CG(D) and

EDGES is:
aug

EDGES EDGES + EDGESaug-P2f + EDGES
aug aug- P3 aug- Pf DEagP2

-N

EDESa bED augP3 (e eb): for all classes 5,5 in KAPPA

such that there exists an alpha in DELTA such that

r alpha lies on a nonredundant cycle in CG(D) in a
alha 6a a ~a ) r b

subpath (walpha' ralpha, e beta or (walpha,

ra a crahe, e ) for some beta in DELTA and inalpha '

KAPPA.)

EDGES aug-P2f (e e) for all classes B, S in KAPPA
such that there exists a 3 in KAPPA and an alpha

and beta in DELTA such that rc andr lie

alpha beta

on a nonredundant cycle in CG(D) in a subpath

Sc c rc a(W wr e r
(wbeta, beta' e alpha' Walpha

• :,,. . . . . . . . . . .
. . . . . . . . .* . . - ..- i
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EDGESaaug-P2 =(e, e ): for all classes a 5 in KAPPA

such that there exists a in KAPPA and an alpha

in DELTA such that rc lies on a nonredundant
alpha le nanneudn

cycle in CG(D) in a subpath (waa C
alpha' alpha'

w alpha ) .

We reiterate that the augmented conflicts are required

only to retain certain ordering information between E's in

a log, so that this information is not destroyed while

trying to serialize a log.

4.3.3 The Serialization Procedure

The serialization procedure takes a non-serial log and

tries to serialize it by switching adjacent atoms that are

not in augmented conflict. The actual serialization is

done by the procedures MOVELEFT and MOVERIGHT which scan

the sublog that separates the two atoms to be serialized

and tries to remove atoms from that sublog, thereby

bringing the two atoms closer together. The procedure SP

repeatedly calls MOVELEFT and MOVERIGHT until the two

atoms have been serialized or until the two atoms cannot

be brought closer together. The choice of which atoms to

serialize is made by SERIALIZE, which quits if either the

'.°* ~. °°-. ,.
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given log has been completely serialized or there are two

atoms which cannot be serialized.

SERIALIZE: PROCEDURE (Lin' Lout, LEFTATOM, RIGHTATOM)

RETURNS (BOOLEAN);

/*The procedure takes L. as input. If L. is

in in

successfully serialized, it returns TRUE. If not, it

returns FALSE, and the log L is the partially
out

serialized log where LEFTATOM and RIGHTATOM is the pair of

atoms that could not be serialized.*/

Lout Lin;

DO FOREVER;

Select the leftmost atom in Lou t that is either

i. an atom Aa and there is an alpha with

a RiR in a u Ri4 alpha Lout bu alpha

not in Aa; or

a a..
ii. an atom Wa in L but Wa is7alpha out alpha

not in Aa

IF there is no (i) or (ii) THEN RETURN (TRUE);

IF i) is the case satisfied above

aTHEN BEGIN LEFTATOM ": rightmost R in Lout butiout

- -- --- - - -s-...', - -
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a a

not in Aa; RIGHTATOM Aa; END;

ELSE BEGIN LEFTATOM Aa; RIGHTATOM Wa END;alpha; N ;Y'-

IF NOT SP(Lout, LEFTATOM, RIGHTATOM)

THEN RETURN (FALSE);

ELSE MERGE LEFTATOM and RIGHTATOM into

a single Aa;

END

END SERIALIZE;

SP: PROCEDURE (LOG, LEFTATOM, RIGHTATOM) RETURNS

(BOOLEAN);

TEMPI TEMP2 TRUE;

DO WHILE ((TEMPI or TEMP2) and (LEFTATOM is not

adjacent to RIGHTATOM));

TEMPI MOVELEFT (LOG, LEFTATOM, RIGHTATOM);

TEMP2 MOVERIGHT (LOG, LEFTATOM, RIGHTATOM);

END;
IF (LEFTATOM is adjacent to RIGHTATOM)

THEN RETURN (TRUE);

ELSE RETURN (FALSE);

END SP;
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MOVELEFT: PROCEDURE (LOG, LEFTATOM, RIGHTATOM) RETURNS

(BOOLEAN);

TEMPLOG LOG; TEMPOUT FALSE;

DO FOR EACH atom, X, between LEFTATOM and RIGHTATOM

in LOG beginning with the right neighbor of LEFTATOM

and moving right;

DO WHILE ((left neighbor of X in TEMPLOG is not in

augmented conflict with X) AND (right neighbor of

X is not LEFTATOM));

Switch X with its left neighbor in TEMPLOG;

END;

1F (right neighbor of X in TEMPLOG is LEFTATOM)

THEN TEMPOUT TRUE;

END;

LOG TEMPLOG;

RETURN (TEMPOUT);

END MOVELEFT;

---1 --
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MOVERIGHT: PROCEDURE (LOG, LEFTATOM, RIGHTATOM) RETURNS

(BOOLEAN);

TEMPLOG := LOG; TEMPOUT FALSE;

DO FOR each atom, X, between RIGHTATOM and LEFTATOM

in LOG beginning with the left neighbor of RIGHTATOM

and moving left;

DO WHILE (right neighbor of X in TEMPLOG is not in

augmented conflict with X) AND (left neighbor of X

is not RIGHTATOM));

Switch X with its right neighbor in TEMPLOG;

END;

IF (left neighbor of X is RIGHTATOM)

THEN TEMPOUT TRUE;

END;

LOG TEMPLOG;

RETURN (TEMPOUT);

END MOVERIGHT;

-- I
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4.3.4 The Serialization Lemma

If the serialization procedure, SERIALIZE, is given a log

that is not serially reproducible, then certain properties

must be true of the output of SERIALIZE. These properties

are summarized in lemma S presented in this section.

First, we require two new definitions. A log, L1 , is a

projection of a log, L2 , if L, can be obtained from L

simply by excising atoms from L2  A log, L, is blocked if 2
every atom in L is in augmented conflict with both its

left and right neighbors in L. Our goal in lemma S will

be to construct a blocked projection of the log that

SERIALIZE outputs.

Lemma S Let LOGg. be a well-formed log defined on the

givenIdatabase design D. If LOGgiven is not serially

reproducible, then

I. SERIALIZE (LOGgiven , LOG out LA, RA) returns

FALSE;

II. every atom of the form Wa  'he o
iLOouofa alpha to the left of RA -.o..

in LOGou t is a member of A

out ." -
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III. every atom of the form Aa to the left of RA in

LOG has no Ra's in LOG that are not members of
out out

Aa.

IV. there is a blocked projection, LOGbloeked, of

LOG such that
out

i. LA and RA are the leftmost and rightmost

atoms of LOGblocked respectively;

ii. there is an a in TAU and an alpha in DELTA

such that either (LA R and RA Aa or"(Lalpha

Aa and RAWa 
alpha

Proof (Part I) Since only equivalence preserving

transformations are attempted by SERIALIZE (by corollary

C-AUG), if LOGgiven is not serially reproducible then

SERIALIZE must fail to serialize it and therefore returns I
FALSE. i

(PARTS II and III) The last atom selected by SERIALIZE was

the leftmost atom that was either a W not in any A or an A

with an outstanding R. Hence, there can be no atoms to

the left of RA in LOG with either of these properties..I

(PART IV) Construct LOGblocked from LOGout as follows:

Excise all atoms to the left of LA and to the right of RA

in LOG Let X be LA's right neighbor. Let Y be an
out

atom in the log somewhere to the right of X that conflicts

.... .... . . . .,
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with X. There must be such a Y, for otherwise MOVERIGHT

would have moved X to the right of RA. Excise all atoms

in LOG between X and Y. If Y i RA, then set X := Y andout

find a Y to the right of X that conflicts with X as

before. Repeat this process until Y RA. The resulting

log, LOGblocked, is a projection of LOG and is blockedblockedout
(by construction). Furthermore, by the choice of LA or RA

in SERIALIZE, IV (ii) must hold. Q.E.D.

While lemma S shows that every non-serially reproducible

log will fail to be serialized by SERIALIZE, it does not L

claim that if a log is serially reproducible then

SERIALIZE will succeed. This converse is not in general

true, for the transformations we use are not complete, as

mentioned in Section 3.3. If we were able to find a more

complete set of transformations, then this might permit us

to weaken our protocols; for some of the serially

reproducible logs that are not serializable under our

current transformations may no longer require a strong

protocol to guarantee that they will not occur.

"h-"4"i

E. , , °
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4.14 Showing Nonserializable Logs are Impossible

The proof of theorem SR is embodied in two major lemmas.

We first present the structure of the proof and then

proceed to the lemmas.

Theorem SR If a system is well-formed, satisfies the

pipelining rules, and satisfies the protocol selection

rules, then all logs that it can generate are serially

reproducible.

Proof Assume the theorem is false. Then there is a log,

say LOG which is well-formed, satisfies thegiven'

pipelining rules, and satisfies the protocol selection

rules, but is not serially reproducible. By lemma S,

SERIALIZE (LOG Lout LA, RA) returns false and, bygiven' Lot

IV(ii) there is a transaction a in TAU and an alpha in

DELTA where either (LA : Ra and RA = Aa) or (LA AaalphaanRA:A ) o(L:
a

and RA : Wal ). These possibilities are shown below to

be impossible by lemmas RA and AW respectively. Hence,..

the conclusions of lemma S were false. But this is

possible only if the hypothesis of lemma S is false. So,

the hypothesis that LOGie was not serially reproducible

must be false. Q.E.D.

• -- . . . - • , . . . . - - . .•
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To prove lemmas RA and AW we will use the following

lemmas.

Lemma P Let L be a blocked log over transaction set TAU

and database design D such that the leftmost atom is in

class a, the rightmost atom is in class 5, and the log has

no atom in class c Then there is a path in CG(D) which

is not incident with any node in class c.

Proof If a 5, then the lemma is trivially true. If

5, then since the log is blocked, each atom is in

augmented conflict with its neighbors. Each such conflict

corresponds to an edge in ACG(D), so there is a path from

a to B in ACG(D) that is not incident with . To find a

new path in CG(D) we need to replace each edge in the old

path that is in EDGES by a path in CG(D). Consider
aug

some edge, say (ed , e ), in the path in EDGES aug If the

,3 edge is in EDGESaug.p 3 , then replace it by the path (e

* waha ra e ) that must exist by definition of• , ~alpha, alpha' ;i[:;.

EDGESaugP 3 * If the edge is in EDGESaugP 2 f , then there

is a class, , and data modules alpha and beta such that
the subpath (e, wa r e "" e' is

walpha, alpha' beta' wbeta,

in CG(D) and there is a path in CG(D) from a to ? that is

not incident with 8. If , then replace (ea by

* the subpath (which is not incident with ). If ,

then replace (e e by the other a - ? path. If the

o' .- ** -
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edge is in EDGESaugP2, then there is a class, , and a

datamodule, alpha, such that there is a subpath (e-

9 f
w r ef ) in CG(D) and there is a path
alpha' alpha' alpha,

in CG(D) from a to 1 that is not incident with . If g . '
d -

i F, then replace e, e ) by the subpath; else replace it ...

by the other d - F path. If all edges in EDGES are
aug

replaced in this way by paths in CG(D) that are not

incident with class , then we have constructed a path in

CG(D) with a node in class c. To make the path

nonredundant, simply replace each nontrivial subpath whose

endpoints are in the same class by vertical edges. This L

nonredundant path then satisfies the lemma. Q. E. D.

Lemma B Let L be a log defined over transaction set TAU

and database design D. Let Lout be a log obtained from L

by the serialization procedure, and let L'ot be a

projection of Lout. Let Xa and Yb be symbols (i.e., not

atoms) that are in augmented conflict such that Xa

precedes Yb in L' Then Xa precedes Yb in L.Out"* -."

Proof Since the serialization procedure never switches
.,. X~~a an bmuthv

atoms that are in augmented conflict, X and Y must have

appeared in the same order in L and L The same must
outs

hold in L' since the latter is a projection of Loutout, E.t
Q. E. D. .""
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Lemma RA Let LOGgiven be a log defined over database

design D and transaction set TAU such that it is

well-formed, satisfies the pipelining rules, and satisfies

the protocol selection rules. Then it is not possible

that SERIALIZE(LOGgiven , LOGout LA, RA) returns FALSE
Swith LA = Ra Aa ":"

alpha and RA A tor some a in TAU and alpha

in DELTA.

Proof Assume that the lemma is false. Then, SERIALIZE

returns FALSE and, by lemma S, there is a blocked

projection of LOGout, say LOGb1ocked, whose leftmost and

rightmost atoms are R alpha and A respectively. That is,
alph

LOGblocked is of the form Ra-pa, A

Beginning with A a, scan left in LOGblocked until the first
i ~at at'" '-
occurrence is found of an R where Ra is not in its

is o anbeta Rbeta nti t

Aa' and transclass(a') transclass(a). (Note: possibly
a' a '" "alpha= beta, and possibly R Ra ) Now, starting
b eta alpha*

with Rbeta' scan right in LOGblocked until the first Aa

is found with transclass(a") = transclass(a).

We want to show that Aa is actually A So suppose not,
a'A a

i.e., a" i a. Since Rbeta is not in A (by
Ea msprcdE a t

construction), by lemma S part III, E must precede E in
LOot . Snc a an a t ..a

LOG Since E and E conflict, by lemma B Ea preceded

a' a aE in LOGgiven (or E = Ea). Since transclass(a")

transclass(a), and since E and E conflict in

",.. . .. . . . . . . . .. . . . . . . . . . -........ ... ..... .. . . .
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all aLOGblocked, by lemma B E preceded E in LOGiven By
Aa'"

lemma S part III, A must contain all of its R's,

a" a ' a"including Ret Since Rbeta precedes Rbeta in LOGblocked
and Ra' beta conflicts with Rbeta by lemma B Rbeta preceded

a a in LOG But since E a" preceded Ea' , this is at "-given*i

violation of R-H pipelining. So, we have a" a, as

desired. That is, LOG is of the form Ra l"h"Lblocked alpha " "

a' A A that n ao l with transclass(a")R b tau ... a... Asuch hat no-

transclass(a) appears between Ra and
betaand A

We create a new log, LOG by excising fromLblocked'
atLOGblocked those atoms to the left of Rbeta and those

Aaa Aa' Aa A"a'
between A and Since A conflict, LOGblocked

is indeed blocked. So, LOGblocked is of the form Rbeta
," ^a ^a'-": "

Aa Aa (where possibly a' a).

Consider Rbet There are only two kinds of atoms thatbeta
can be Rat s conflicting right neighbor: either an

"R where transclass(a") transclass(a'); or a Wb
,beta wbeta

where transclass(a t) i transclass(b) and the three-way

intersection of

matzn-of-class(transclass(a'))(transreadset(a')) and

logical (transwriteset(b)) and stored-data 1 (beta) is
at all

nonempty. By choice of Ra Ra is not possible. So,
betaa Hbeta i soe. o,

Sbeta right neighbor must be Wb (Note: possibly
Ra' beta'

alpha beta). By lemma S (part II), Wb is a member of
. .beta

Ab.

A ±l &i..* * i
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Let Xc be the left neighbor of Aa in LOGblocked* That is,

LOG is of'thefor.a A b 'b c at
LOGblocked of the form RbetaA W beta-] ... XA

l X~c andA :'"

Since LOG is blocked, X and A are in augmented
LQlcked

conflict. (Note: possibly c-b, Ab Xc). By the above
allm

argument regarding A transclass(a) i transclass(c).

In the remainder of this proof, let a transclass(a), .

transclass(b), and = transclass(c).

Claim RA There is a nonredundant path in CG(D) from

a node labelled B to a node labelled such that the path

passes through no other node labelled .

This claim, which follows directly from lemma P, will be

applied repeatedly in the remainder of the proof.

In the remainder of the proof, we analyze the ways in

which Xc can be in augmented conflict with A and show

each possible conflict to be impossible. Since the only

assumption made so far is that the lemma is false, the

contradiction that Xc does not conflict with Aa will prove

the lemma.

XC can only be in augmented conflict with Aa' due to one

of NTR 1 ' - NTR8
1 , ANTRP 2, ANTRp2 f, or ANTR 3  Since

(by construction), NTR 1
1, NTR 2 ' NTR I NTR5' NTR 6 '(i)NTR1  , 4 5 , 6 . :'

and NTRT'(ii) cannot be the cause of the conflict. NTR

7 3
trivially does not apply, since it does not apply to an A.
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NTR 8  cannot apply because by lemma S, Xc cannot be a W

that is not a member of Ac . The remaining cases are

NTR 6 1(ii) , NTR 6 ' (iii) , NTR 6  (iv) , NTR '(), ANTRp2 {''

ANTRp2 f, and ANTRp 3 ; they are subsumed by the following

cases:

I. X A; there is a gamma in DELTA with Wgamma',. ~gamma "'

in Ac and Ra agamma in A; and the three-way

intersection of matzn-of-class(a)(transreadset(a))

and logical (transwriteset(c)) and

stored-data (gamma) is nonempty.

II. there is a gamma in DELTA such that either Xc

RC or (Xc :AC andR' is in AC Wa is
gamma gamma gamma

in A and the three-way intersection of

matzn-of-class( )(transreadset(c)) and

logical- (transwriteset(a)) and stored-data- (gamma)

is nonempty.

III. XC AC and the intersection of transwriteset(c)

and transwriteset(a) is nonempty.

IV. XC AC and A C-Aa are in augmented conflict by

ANTR ANTR or ANTRp3 .

We analyze each of the four cases in detail.
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Case I (Xc  AC and contains WA contains Ragamma gamma'a  W

R and Wc conflict)
gamma gamma

' ~a' Ab[ Wb  ....]LOGblkd is of the form a'eta ...
Rbe beta

Ac  c ] a[ Ra  ] a t
AC [.W ~ A ...R1A

gamma gamma A

There are two subcases to consider: beta i gamma and beta

: gamma.

Subcase beta i gamma

From the a' - b and c -a conflict in LOG the
blocked' t

edges ( cn r( a are in
b(reta, beta) and (wgamma' gamma

CG(D).

By definition of EDGESvert, the edges (r eeta, a and

(ra ea) are in CG(D).gamma ' ."

By claim RA-path, there is a nonredundant path in
CG(D) from w tw that does not pass through

beta to gamma

any nodes in class a. Graphically, we have the cycle

noted in figure 4.1.

This cycle and the protocol selection rules imply

at a'Rgamm and R beta must satisfy protocol P2f against c

and B (respectively) at gamma and beta

(respectively). The following sequence of inferences

leads to a contradiction.
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Nonredundant Cycle, for Case I of Lemma RA Figure 4.1

a a'beta rgamma

.w
beta gamma ,

a nonredundant path with
\ no nodes labelled 5

a~ a'

i. Since Ea and Ea' are in augmented conflict and

Ea precedes Ea' in LOG by lemma B Ea

a'Iprecedes E in LOG By R-R pipelining,given B R- pieing
Ra precedes a' in LOGgamma Rgamma given'

. Ra conflicts withgamma gamma' so by lemma B

Ra followed W in LOGgamma gamma given'

Wc -
iii. By (i), (ii) and transitivity, Wc

gamma

precedes Ra' in LOG
gamma given*

b c
iv. By definition of NTR E and E are inP2f' I .

W augmented conflict. So by lemma B, Eb precedes Ec

in LOGgiven-
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v. Since Ra' b conflict and a

beta and Wbeta condRbeta

precedes b ' a'
beta in LOGblocked, by lemma B Rbeta

precedes Wbeta in LOGgiven*

vi. But (iii), (iv), and (v) constitute a

violation of the partitioned writes property for

a' a' Rbeta and Rga with respect to S and cbeta gamma

respectively. So, a' violated protocol P2f, a

contradiction. This proves case I, subcase beta •

gamma.

Subcase beta gamma

In this case, LOGblocked is of the form:

Ra A b W b . A... .Ac[ .c ]Aa[ Ra a'
beta beta- beta ]A beta-' ]A

If a a' then beta isn't unique in the log, a

contradiction. If a i a'; then since Rbeta and Rbeta

conflict, by lemma B Ra' precedes Ra in
beta Rbeta

LOgiven Since Ea and Ea t conflict, by lemma B Ea

precedes Ea' in LOG e. This is a violation of R-R

pipelining. Contradiction!

Case II (either Rc X or Rc is in Ac Xc .
gamma gamma

a a acofitWa  is in A;" and Rc Wa
gamma i gamma and gamma conflict)

LOGblocked is either of the form
p.

' I,.- - . ." " : :- . - . . .
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Ra' b[ .. be a[ ... Wa a'
beta geta. . .. gamma A  gamma* A

or

a' A b[ b AC .RC .a[..Wa a

Rbeta " beta " ... [.. gamma'' ] A  gamma - ] A

From the conflicts in LOGblocked, the edges (rbeta' Wbeta)

aand gamma W ) are in CG(D).

By definition of EDGESvert , the edges (r eta,ea) and

a a
(e wga) are in CG(D).Wgamma - .<

By claim RA-path, there is a nonredundant path from Wbeta

to rg that does not pass through any node in class a.gamma

So we have the norredundant cycle shown in figure 4.2.

This graph and the protocol selection rules implies that

a'R must satisfy protocol P3 with respect to S at beta.beta

By ANTR E and E are in augmented conflict. Since Eb
P3'

prcde a inLGb ades E in blocked by lemma B Eb precedes E in

LOGgiver. By the same argument, we deduce that Ea

precedes Ea' in LOGgiven. By transitivity, E precedes

Ea' in LOGgiven. Since Ra and beta conflict, by lemma
a' b

B beta precedes Wbeta in LOGgiven This is a violation

of P3, a contradiction, thereby proving case II.

Case III (X: Ac and the intersection of

transwriteset(c) and transwriteset(a) is nonempty.
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Nor.redur.dar.t Cycle, for Case II of Lemma RA Figure 4.2

rc ra
gamma beta

a a

bW gamma ' Wbeta

edundant path with
n nodes labelled -

LOG k is of the form Ra Ab [.w
Locked beta . beta • "

(This argument is essentially the same as Case II.)

From the conflicts in LOGblocked, the edges (r eta w beta)

and (e, ec) are in CG(D).

By definition of EDGESvert , the edge (rbeta, ea) is in

* CG(D).

b
By claim RA-path, there is a nor.redundant path from wbeta

* to e C that does not pass through any node in class • So,

we have the nonredundant cycle shown in figure 4.3.

This graph and the protocol selection rules imply Ra

Rbeta• Eb

must satisfy P3 with respect to Z at beta. By ANTRp3 , Eb

a b a
and E are in augmented conflict. Since E precedes E in

LOGblocked, by lemma B Eb precedes Ea in LOG By thebl ck d given '"
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same argument, we deduce that Ea precedes Ea t in LOGgive

b a' a
*..' By transitivity, E precedes E in LOGgive. Since Ra

givenbeta
-b conflict Ra' b inard beta by lemma B, precedes Wbea n

LOGgiven. This violates P3, a contradiction, thereby

" Nonredundant cycle, for Case III of Lemma RA Figure 4.3

baWbt

a nonredundant path with
no nodes labelled a

proving case III.

c c C a
CASE IV (Xc  A and A - A are in augmented conflict by

ANTRp2 , ANTRp2 f, or ANTRp3 .)

LOGblocked is of the form

a' b[. b caa ' . -

beta .... beta

From the log, the edge (r beta' Wbeta) is in CG(D). From

claim RA-path, there is a nonredundant path in CG(D) from

a node in c to a node in S that does not pass through any

node in a. There are now three subcases to consider for
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each of ANTR ANTR and ANTR -- the only ways that
P21 P2f P3

Ac-Aa can be in augmented conflict.

Subcase IV - ANTRp2

By ANTRp2 , there is a class, B, and a data module, gamma,

such that there is a nonredundant cycle in CG(D) with the

subpath

a di agwamma' gamma' wgamma)-

C d

So, we can deduce that the edges (wc ad
gamma gamma

a(rgamma wgamma) are in CG(D). By definition of

EGSa a) a aEDGESvert' the edges (rbeta, e and (ea , wgamma) are in

CMOD. Hence, given ( eta above, we have
beta' wbe-a

nonredundant path in CG(D) of

b a a a(wbeta, rbeta' e gamma.

To complete a nonredundant cycle, we need an independent
r" onredundant path from wa b ,i,
nr nn a fmgamma to wbeta. If d = then we

are done since the edges

gamma' gamma gamma' Wbeta)

suffice.

If a , then the edges (Wram an d
gamma gamma)

(r gammaw gamma) together with the known nonredundant path

from E to 6 suffices. (If the path intersects B, then the

r.. - -,
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(r Wgamma) edge can be removed and replaced by

gammaa'.

So, we have a nonredundant cycle (see figure 4.4).

, By the protocol selection rules, Rbt must satisfy P3k. , R~~~~~beta ms aif 3":2,:

with respect to B at beta. However, P3 is violated in the

following way. By ANTRP3 and the cycle, Ea and Eb are in

. augmented conflict. So, since Eb precedes Ea in

LOG ablocked' by lemma B, Eb precedes E in LOGgiven. As

deduced earlier, Ea precedes Ea' in LOGgien By
given*L

b a' a'
transitivity, E precedes E in LOGgiven* Since Rbeta

ba
t  

b ..
*conflicts with Wb b em precedes Wb in

beta' blemBRbeta beta
LOGgiven* This violates P3, a contradiction, thereby

proving the subcase.

Subcase IV ANTRp2 f  .. -

By ANTRp2 F, there is a class, a, and two distinct data

modules, gamma and delta, such that there is a

nonredundant cycle in CG(D) with the subpath

(Wa r e ra wa ).
gamma' rgamma' rdelta' delta

We can now continue exactly as in subcase IV - ANTRP 2,

yielding the same P3 violation (see figure 4.5).

Subcase IV - ANTR

By ANTRP3 , there is a data module, gamma, such that there



-. "°

SDD-1 Concurrency Control Mechanism Page -137-
Proof of Serial Reproducibility Section 4

-eeeeee------- ----------- -- -- - - - -- -

Norredundant Cycles, for Case IV-ANTRP 2  Figure 4.4
of Lemma RA

Subcase : a

a5
rbeta rgamma

e e

a 5

gamma beta

Subcase 1 a

a.-d
r r,, r be ta rg amma" 2-"

SC,-. CWbe ta wa  -Wgamma
gagama

La nonredundant path with

n- nodes labelled a

If the S - path intersects 3, then we have vertical

edge(s) from r gamma Lo the path, thereby completing the

cycle in a slightly different way.

e ---------- ------

is a norredundant cycle in CG(D) with either the subpath

r:-/
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Nornredundant Cycle, for Case IV -ANTRP 2f Figure 4.5

I.a d d
rbeta rdeltagam

delta

beta elta- gamma

a< nonredundant path with
nnodes labelled

-----------------------------------------------------------------

*c c a ea)( rgamma' Wgamma'

a a c ec).
or e gamma' Wgamma'

We treat each subpath as a separate case.

-- c c a ea)
~uoasev ATP 3  ama' Wgamma~

We can deduce that the edge (rcwi in C()gamma' Wgamma i

We can now continue exactly as in Subcase IV - ANTR~2

yielding the same P3 viol. tiori. (See figure 4.6.)

Subcase IV -ANTR - ea, r a C e )

_~a P3fic__

Since e a~e care in EDGES there is a nonredundant
aug-P3'

path from e a to e C that does not pass through any r a4

(including rabeta From claim RA-path, there is a

nonredundant path from to Sthat does not pass through
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------------------------ --------------------------------
No-;edundant Cycle for Case IV-ANTR Figure 4.6

(ec, r e  a) of Lemma RA
gamma' gamma' e-f--m-"

ra rcbeta gamma

a e

ibtrbeta "ii-{i

a
gamma

a nonredundant path with
n nodes labelled -

arny node. By concatenating the 3 and 3 paths

and elimir.ating any redundant subpaths, we obtain a

a b anonredundant path from e to e containing no r node.

This path does not pass through the edge (ra )vbeta' Wbeta ' "'

which therefore completes a nonredundant cycle containing
a

(rbeta, w eta)(see figure 4.7). So, by the protocol
a'

selection rules, Rbeta must satisfy P3 with respect to

at beta. We now continue as in subcase IV ANTRp2,

yielding the same P3 violation. This completes case IV,

and the proof of lemma RA. Q. E. D.

Lemma AW Let LOG be a log defined over database
-- given

design DELTA and transaction set TAU such that it is

well-formed, satisfies the pipelining rules, and satisfies

the protocol selection rules. Then it is not possible

thqt

..
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Nonredundant Cycle for Case IV - ANTR - Figure 4.7

a a c e ciL
.-. 'rgamma' Wgamma, e in Lemma RA

r a' rr ra

*beta gamma

i: ee

a path with no r node

a nonredundant path with
no node labelled

SERIALIZE (LOGgiven' LOGout, LA, RA) returns FALSE with

LA A a and RA Wap-a for some a in TAU and alpha in

. DELTA.

Proof Assume that the lemma is false. Then, SERIALIZE

returns FALSE and, by lemma S, there is a blocked

projection of LOGout, say LOGblocked, whose leftmost and

rightmost atoms are Aa and Wa respectively. That is,
alpha

LOGblocked is of the form A a . a•.e Walph a *

Consider There are only two kinds of atoms that

can be Wa 's conflicting left neighbor: either Wag
alpha' alphag..ee

* (which by lemma S part II must be contained in Aa' where
b)

. transclass(a') = transclass(a), or Rb (which may or
alpha

may not be contained in A b) such that the three-way

:" . .

.1• °
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intersection of

matzr.-of-class(transclass(b))(transreadset(b)) and

logical (transwriteset(a)) and stored-data-1 (alpha) is

nonempty.

Suppose Walpha is the conflicting neighbor. Since Walpha

precedes and conflicts with Wa WB W atalpha, b lem BWalpha  i '
Wa in LOG Since Ea  precedes and

precedes alpha preedegivens a

conflicts with Ea in LOG by lemma B Ea precedesi blocked'bylmaBpeee (.-

a'
E in LOG But since transclass(a) =

transclass(a'), this violates W-W pipelining. So, Wa
Walphacannot be Wa  '"''

cn e a s left conflicting neighbor. Therefore,

LOGblocked is either of the form

Aa  Rb  a."-.

Aa ... Rb aalpha alpha or
a b alhb jWa... ... alpha-. Walpha .*/.-i

We now show that transclass(a) i transclass(b). Assume

not. Since Eb follows Rb in LOGout, Eb follows Ea in

LOG out  Since transclass(a) = transclass(b) and Ea

precedes Eb in LOGoutv by lemma B Ea precedes Eb in

b
LOGgiven Since transclass(a) = transclass(b), Ralpha and

Wa conflict; since R precedes Walpha in

Rb a1Lpha R lprecedes a in LOG1

LOGblocked' by lemma B al precedes Wa lpha in LOGgiven*

This violates W-R pipelining, a contradiction. So,

transclass(a) i transclass(b). 77":

S:-,
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Begining at Rlpha scan to the left through LOGb1ocked

until the first atom with a superscript of a"l where

transclass(a) = transclass(a") is found. Say this is Xa".

(Note: possibly X Aa.) Now, beginning with X , scan

to the right in LOGblocked until the first atom with ablocked|

superscript of b' where transclass(b') = transclass(b) is

found. Say this is yb' (Note: possibly Yb' Ab or Y
Rb .Rlh.) Thus, LOGblocked is either of the form

A a  a ll y b R b  W a  " " -
Aa...X ... Y ... R alphaW alpha

or
a  a  b' Ab[ Rb Wa"

... ... .. ... alpha... Walpha"*.['.

Consider the left neighbor of yb, say Zc. (Note:

possibly Zc  Xa.) By choice of Yb', transclass(b') i

transclass(c). In the remainder of this proof, let a :

transclass(a), E transclass(b), and c transclass(c).

Recall i , and i by construction.

We now construct a new log, LOGblocked' by excising from

LOG ing Aa fo a"'
LOGblocked those atoms (if any) separating A from and

Cery th reutn lo, Lb1ke ablocked
those atoms (if any) separating Yb' from A (or Ralpha).

Clearly, the resulting log, LOG blocked' is a blocked m

projection of LOGblocked . LOGblkd is of the form
Aa a ll zCyb b  a-.
A a" ..ZY R Wa or

alpha alpha

AaXall ..z y ' b .Rb  ]Wa
alpha- alpha'

- - . • o- A t . . . V = t V . . . . . . - . . - - -
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Claim AW-path There is a nonredundant path in CG(D) from

a node with a label superscripted such that the path

passes through no other node labelled .

This claim, which follows directly from lemma P, will be

applied repeatedly in the remainder of the proof.

c
We analyze the ways in which Z can be in augmented

conflict with Yb' and show each possible conflict to be

impossible. Since the only assumption made so far is that

the lemma is false, the contradiction that Zc does not

cor.flict with b will prove the lemma.

Zc can only be in augmented conflict with yb' due to one

of NTH - NTH, ANTRP2' ANTR p2f or ANTRp3. Since C ,

NTRi, NTR$, NTR%, NTR4, NTR , NTR6(i), and NTRj(ii)

car.not be the cause of the conflict. NTR and NTR' do3 8
not apply, because no W can appear in the sublog unless it

is contained in an A, by lemma S, part II. The remaining
cases are NTR6(ii), NTR6(iii), NTR'(iv), NTHj(i),

ANTHp2 , ANTRp 2 F, and ANTRp3 ; They are subsumed by the

following cases:

1. Z :c Ac there is a beta in DELTA such that We is

in Ac and either yb' Rb' or bi is in Ab' yb'
beta Rbeta s

and the three-way intersection of

matzn-of-class(E)(transreadset(b')) and

.-
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logical1 l(transwriteset(c)) an~d stored-data 1 l(beta) is

rnorempty.

II. there is a beta in DELTA such that either ZC R C
beta

or R C is in Ac Z Zc. b AbI ard W b' is ir. A b'
beta beta

arnd the three way in~tersection4  of

matzn-of-class(E)(transreadset(c)) arnd

logical-1(transwriteset(b')) and stored-data1l(beta) is

rnorempty.

Ac; Z Yb A and the intersectio. of

transwriteset(c) arnd transwriteset(b') in nonempty.

IV. = Ac arnd Ac-Ab are in augmented conflict by

ANTR~2  ANTRpf or ANTR~3  We analyze each of the four

cases in detail.

CASE. J (Z c =Ac corntains W~ea either Yb Ret or

Rb is in Ab yb and Rb and Wc conflict.)beta beta beta

LOG blked is of the form:

a a' c[ . Wc b; b WaA X . ... At ** RbtR Wbeab talpha alpha

where possibly Rb' i ir A b' and possibly R b is in
Rbeta isalpha

bA .There are two subcases to consider: alpha =beta and

alpha 4 beta.
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Subcase alpha beta

From conflicts in LOG the edges (Weta) andblocked' rbeta,

(r alpha w ) exist in CG(D). Since alpha = beta,alh$al2hacb  c b c
(-beta' Wbeta) (ralpha' Walpha)

By claim AW-path, there is a nonredundant path from wc
alpha

to Wal ha that does not pass through any node in class S.

Norredjrdant Cycle for Case I (alpha : beta) Figure 4.8
of Lemma AW

rb~/ r

aa "

w wet"
a p ha be...ta-

a nonredundant path with
n nodes labelled S

-------------------------------------------------------

So, we have the nonredundant cycle noted in figure 4.8.

If c = a, then alpha is not unique in the log, a

contradiction. So, c i a.

Either c : a or c 4 a. Suppose c : a. Then Ec and Ea

conflict and by lemma B, Ea precedes Ec in LOGgivengiven'",-. ,.

Since W h and Walpha conflict, by lemma B Walphaalphaalhapa

precedes Wa in LOG This violates W-W
alpha given*

pipelining, a contradiction. Hence c 4 ._
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The cycle and the protocol selection rules imply Rbbt

must satisfy P2 with respect to and at alpha. By

ANTHp2' E a and Ec are in augmented conflict and so, by

lemma B, Ea precedes Ec in LOGgiven. Since Wap a and .

Rb' conflict, by lemma B, WC d R a' in
beta Walpha precees alpha

b'
LOG Since beta : alpha, R conflicts with'.giver.* beta c

Ralpha' so by lemma B, R precedes b in LOGgiven.
alh'alpha Ralphagie.

Similarly, b precedes W in LOG so byalph alpha LOgiver.'Rbh Walhu '

bi a
transitivity, Ralpha precedes Walpha in LOGgiven' But

this says that Rb' violates P2. ContradictioJn!

Subcase alpha i beta_

From conflicts in LOGblocked' the edges (r beta' Wbeta) and

b a(r w xs nC()
alpha' Walpha) exist in CG(D).

b b
By definition of EDGES vert the edges (r beta e and

b b
(ralpha e ) exist in CG(D).

By claim AW-path, there is a nonredundant path from Wbeta

to w eta that does not pass through any nodes in class $-

So, we have the nonredundant cycle noted in figure 4.9.

This cycle and the protocol selection rules imply that

Rb b and b' b'
SRbet a Ralpha Rbeta both have to satisfy P2f

with respect to a at alpha and c at beta.

... .. ..
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Nonredundant Cycle for Case I Figure 4.9

(alpha beta) of Lemma AW

ralpha r beta

be

c
alpha - Wbeta

a nonredundant path with
no nodes labelled -

----------------------------------------------------------

We first show that Eb precedes E in LOG Bygie
Ea  c -

ANTR 2 f E and E are in augmented conflict, so by lemma

B, E a precede3 Ec in LOG given Since Rb? conflicts with
Wc  b' c"" "
Wb by lemma B Rb follows Wb ir LOGg. Sincebeta' Rbeta bet a given*
Ea precedes Ec by P2f Rb follows Wa OG

alpha alpha in L iven

But since Rb precedes Wa in LOG (by lemma B),
alpha alpha given

Rb b
alpha precedes Rbeta in LOGgiven. Hence, by R-R

pipelining, Eb precedes Eb ' in LOGgiven*

We now need to show E precedes E in LOGgiven , to

establish a contradiction. To prove this, we first show

each of the following properties of LOGblocked:

i. b i b';

ii. Rb is not in Abeta
b Abiii. Rlh is not in A

.*'- - - --
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iv. there is no Ab in LOG between Rb; and
out beta

b with transclass(b") : B.
alpha

This sufficiently restricts the form of LOGb1ocked so that

we will be able to obtain a contradiction.

':b' b b '

.. i. Suppose b = b'. Then Rbeta Rbeta and Rb must
beta betaalpha

* satisfy P2f with respect to c at beta and a at alpha

* (respectively). By ANTR Ea and Ec  are in augmented'. ~P2f' l-3

*i conflict, so by lemma B, Ea precedes Ec ir LOGgive..-
Cb Rb

Since Wc ta conflicts with Rb and conflicts withbeeta alpha co-J
awC Rb

Wa by lemma B, beta precedes beta and Ralpha

precedes Wa in LOG But this violates P2f,
alpha given'

contradiction! So, b b'-.
b b

* ii. Suppose Rb is in Ab By part III of lemma S,
alpha'" b  bofit wit W

Rbeta is also in Ab Since Rb conflicts with Wc ardbetabeta betaad

b W
R conflicts with we obtain the same P2f
alpha alpha' w th mRb b-,'

. violation as (i). So, Rb is not in Ab
alpha

" iii. Rb' is not in Ab' by the same argument as (ii).
beta

iv. There is no other A b in between Rb' and Rblph abeta alpha b

the same argument as (ii).

* From (iv) and part II of lemma S, we conclude that every
b' R

atom in class B in between R and b in LOG is
beta Rlpha out

an R that is not contained in an A. Consider one such

R in this sublog. Each neighbor of R must be
gamma gamma

either another Rb' in or a Wd whose writeset-gamma i oragamma
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intersects the readset of b" as per NTR By lemma S part
3.=,' dI bd

" .

", Wdamma must be in Ad. Hence, the sublog between Rb'

ad Rlpha is of the form:

cRb' R t  d[ d  . We

beta beta- b"ta beta Ae[ amma]Rgmma''"

Rb 4  Af[ W f  ... etc. ...Rpb b Rb
gamma gamma apha. alph alpha*

Consider one pair of Rbs in this sublog that have no R's

in class S in between them. For example, consider

gamma gamma 'Ag['WeltaW]Rit

We want to show that Eb 4  precedes Eb5  in LOGgiven.

Suppose gamma = delta. Since Rb4  conflicts with and
gammab b

precedes R in LOG by lemma b, Rg4aprecedes
R~mma LOblocked' emab gamma

R~rma in LOG given Suppose gamma i delta. By lemma P,

there is a path in CG(D) from T transclass(f) to

g =transclass(g) that does not pass through any node in

S. From the log, the edges (rb w and (rde.ta.gamma' gamma delta,

Wdelta) are in CG(D). By definition of EDGESvert , the

edges (r b e ) and (e b  r b are in GG(D). So, wedelta, gamma
have a nonredundant (P2f) cycle. Since Rb 4 conflicts

cyclegamma

with W and Rb conflicts W "lm
gamma gamma delta' by lemma B,b f b

R4gamma precedes Wgamma and Wgelta precedes Rg~mma in

LOGgiven By ANTRP 2 or ANTRp 2 f (depending on whether or

not T : g) Eg and Ef are in augmented conflict, so by

lemma B, E precedes Eg in LOGgiven. By P2f, since R~mma
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follows Wdla then Rgb amust follow Wf Since

delta gamma*S.
gamma recedegamma

a precedes WR gmma precedes Rgmma (by lemma

bbB). Hence, by R-R pipelining E 4 precedes Eb5.

Recall that the log between Rb and Rb is of the
beta alpha

form:

AcRb' b b d Wd e . We a
betaRb ta... Rb taA [. beta. A gamma-].

b b f fR3ma Rb4 A[' "W.c
amma . gamma gamma.....etc.

By R-R pipelining Eb precedes Eb2 in LOGgiven. By the

above argument, Eb2 precedes Eb 3, so by the transitivity

Eb' precedes Eb3 . By R-R pipelining and transitivity, Eb

precedes Eb4 in LOG given By continuing the induction on

the number of R's in 5 in between Rb and R webeta alpha' w
hv b

have that Eb precedes E in LOGgiven. This establishes a

contradiction, thereby completing case 1 for alpha i beta.

Case II (either Rc :c or Rc is in Zc Ac. Wbbeta beta beta

is in Ac conflict)
beta beta

LOGblkd is of the form

Aaa' c b'[ b' b a Rc"'" beta beta Ralpha alpha' where possibly beta

is in Ac.

Ic b
From conflicts in LOG blocked the edges (rbeta, wbeta ndbloked bea bet

r wal ) are in CG(D).
ralpha' alpha
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By claim AW-path, there is a nonredundant path from w a
alpha

C
to r beta that does not pass through any node in class g.

Nor.redundant cycle for Case II of Lemma AW Figure 4.10

r r-'2 alpha rbeta"

"" .a nonredundant path with
no nodes labelled :

----------- ----------- ---------- ----------- ----------

So, we have the nonredundant cycle noted in figure 4.10.

The cycle and the protocol selection rules imply Rb lpha

must satisfy P3 with respect to at alpha. By ANTR Ea

P3,
is in augmented conflict with Eb Since Eb follows Ea in

b a
blocked (because R follows E in LOG byloG alpha blocked)

lemma B, Ea precedes Eb in LOGgiven Since Rb
givenalpha

conflicts with Wa by lemma b, R precedes Waalpha, ylmab alpha Walpha ,

in LOGgiven* But this means that Rb violates P3 with" ~~~~alphaviltsP wihi!:

respect to at alpha. Contradiction!

.Case III (Z;c Ac; b the intersection of

transwriteset(c) and transwriteset(b') is nonempty)

LOGblocked is of the form
b c
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A axal .C b
alpha alpha

From conflicts in LOGblocked, the edges (eC e ) and

(rp W are in CG(D). By definition of EDGES
alpha' a~lpha) vert

ralph a ) is in CG(D).

By claim AW-path, there is a nonredundant path from wa
alpha

to ec that does not pass through any nodes in class S.

-----------------------------------------------------------
Nonredundant Cycle for Case III of Lemma AW Figure 4.11

r b h a ::

eC

wa a nonredundant path withalpha n nodes labelled S

So, we have the nonredundant cycle noted in figure 4.11.

The cycle and the protocol selection rules imply Rb
alpha

must satisfy P3 with respect to 5 at alpha. The remainder -

of the argument is identical to case II.

Case~ ~ cV ( c A b ' ":
Case IV (Z= A and Ac-A are in augmented conflict by

ANTRp2 , ANTRp 2 f, or ANTRp3 ). LOGblocked is of the form

AaXa' zCybR Wa where possibly Rc is in Ab•. beta alpha beta
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From the log, the edge (r wis From
r alpha ) ish in CG(D). Fo

'alpha' alpha-

claim AW-path and the sublog Xa .. Zc there is a

nonredundant path in CG(D) from a node in Z to a node in a

that does not pass through any node in S. There are now

three subcases to consider for each of ANTRP 2 , ANTRp 2 f ,

cb'and ANTRp3  the only ways that AC-A can be in

conflict.

Subcase IV - ANTRp2

By ANTR there is a class, , and a data module, beta,
P2'

such that there is a nonredundant cycle in CG(D) with the

subath (wcd bsubpath (wbeta' rbeta' wbeta). We want to show a subpath

Sb b a(w e r walpha) in a cycle in CG(D). By

definition of EDGES the edges (wb
vert' beta' e ) and (eb,

ra aare in CG(D) If U A then the subpath (wcralpha aei CGD) If'*a beta'• "

ab
r b we) and the nonredundant path from to that. ~beta' beta ----

does not pass through 6 are sufficient to complete the

cycle (see figure 4.12). If a : then the edge (ra" " ' beta'"

wba e a ea w from a a-a
- Wbeta) and the edges (rbeta e and -alpha

EDGES are sufficient to complete the cycle (see figure
vert

4.12). So, we have a nonredundant cycle in CG(D) with the

b b S asubpath (w e ralpha wapha Hence, by thebeta, apa lh

bprotocol selection rules, ralpha must satisfy P3 with

respect to at alpha. However P3 is violated by Rb., alpha

in the following way: By ANTR and the cycle, E and E
P3
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Norredundant Cycles for Subcase IV -- Figure 4.12

ANTRp2 of Lemma AW

ral h rb t.,, :

W r alpha beta

Wlh Wbeta

a nonredundant path with to

no nodes in -

a nonredundant path with
no nodes in .

are in augmented conflict. So, since Ea precedes Rblpha• ' ~ ~~~~alpha :L::-]: -;

which precedes Eb in LOGo by lemma B, E precedesEalpeceksed•,

E b in LOGgiven. Since R balpha conflicts with Walpha ,
b a

a p ecedes in . This violates P3, a

contradiction.

Subcase IV - ANTRp2 f

By ANTRp2f, there is a class, a, and two distinct data

modules, beta and gamma, such that there is a cycle in

CG(D) with a subpath

(w r e r w

(wbetat rbeta' e , gamma' Wgamma)i

We can proceed exactly as in Subcase IV - ANTRP 2 yielding

the same P3 violation (see figure 4.13).

-

,- ' ' . -. -i .. . -ll - .-. - . - . .. . . . . . . .
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---------------------------------------------------------------------------
* Norredurndant Cycles for Subcase IV -- Figure 4.13

ANTR P2f of Lemma AW

ralpha gamma beta

eb

Wbetapahwt
*alpha gamma noriredundantpahwt

no nodes labelled

nonr edundant path with
no nodes labelled Jl

* Subcase IV -ANTR

By ANTR there is a data module beta, such that there is

*a cycle in CG(D) with either the subpath

(c c b b
Wbeta' rbeta'

* or

Cec r beta' w beta' e

- ~ We treat each subpath as a separate case.

c cSubcase IV -ANTR 3 - (e, beta'

We can deduce that the edge Crc is in CG(D),beta' Wbeta)

and by definition of EDGES vr (wbea e and (e-

*rlpa are in CG(D) (see figure 4.14a). As in subcase IV
alh
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Nornredurndart Cycles for Subcase IV -- Figure 4.14

ANTR P3 of Lemma AW

ralpha rbeta

ee

onredundant path with
\-__.no node labelled

(a)

rb rb
alpha beta

fonredundant path

w alpha____

nonredundant path withno nodes labelled

(b)

b
* . ANTR~2  alh must satisfy P3, but violates P3 in

* LOG gvr'a contradiction.
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Subcase IV -ANTR P3 (eC wbeta' r beta, e)

By these augmented edges and ANTR there is a path fromP3,
*e to e that does not pass through rb (including

gamma

ralpb ) This completes the cycle (see figure 4I.14b) and

we can proceed to a P3 violation as in Subcase IV -

ANTR 2*Q. E. D.
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5. Protocol P4, A Cycle-Breaking Protocol

"0

5.1 Motivation for a Cycle-Breaking Protocol

From a logical standpoint, {P1, P2, P2f, P3} are a

sufficient set of mechanisms to correctly execute all 71

transactions in all classes. That is, with these protocol

schemas alone, serial reproducibility can be guaranteed.

However, from an efficiency standpoint, these protocol

schemas have a serious problem. The problem is that a

single class can cause cycles in the conflict graph and

thereby force many classes to run expensive protocols,

even though very - few transactions are ever run in that

class.

While we expect that the vast majority of transactions

that we wish to execute are predictable and belong to

predefined classes, we still want to be able to execute an

- unexpected transaction that does not fit into any of our

class definitions. One way to accomplish this is to

define a very "large" class, call it Ct , that has a
total



SDD-1 Concurrency Control Mechanism Page -159-
Protocol P4, A Cycle-Breaking Protocol Section 5

read-set and write-set that includes the entire logical

database. Every conceivable transaction can fit into

Ctotal, so this apparently solves the problem. But the

cost is enormous, for C total induces a two-class cycle

with every other class in the system. So, every class has S

to run P3 against Cto tal, and Ctotal has to run P3 against

every other class. Since P3 is the most expensive

protocol schema, this is an unfortunate state of affairs.

It is especially unfortunate because transactions will

rarely need to execute in Ctotal, since most transactions

fit into other less expensive classes. So, Ctotal

introduces considerable synchronization overhead for

synchronizing against a class that will rarely run a

transaction.

In general, any class in which transactions are only

infrequently run, but which creates many cycles in the

conflict graph, exhibits this phenomenon. Clearly, the

problem of proliferation of cycles is especially acute in

Ctotal* However, other classes with smaller read-sets and

write-sets may manifest the same problem.

To alleviate these problems we introduce a new protocol

schema, called P4. the purpose of P4 is to "break" cycles

in the conflict graph. That is, if a class runs P4, then
other classes that are in a cycle with the P4 class can

.'
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behave as if the cycle did not exist (and, therefore, run I
P1 with respect to that cycle). In other words, the

protocol selection rules only apply to cycles that do not

contain a class that runs P4.

That we need a P4 cycle-breaking protocol is clear. In

the remainder of this section, we discuss how such a

protocol can be implemented.

5.2 Overview of P4

One way to implement P4 is to shut off the system so that

no new transactions can be introduced. After all

outstanding WRITE messages have been processed, then the

system has quiesced. Assuming every class was running the

correct protocol, the log (up to this point) should be

* serially reproducible. Now, we run the P~4 transaction.

After all of this transaction's WRITE messages arrive and

are processed, it is safe to start up the system again,

allowing new transactions to be run. What we have done is

turn off the system, wait until a serially reproducible

database state is reached, run ihe P4 to completion, and

then start up the system again. The P4 transaction

partitions the log in half, and each half is serially

reproducible (since thte other transactions are running the

correct protocols).
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The degradation of performance that results from shutting

off the system, even temporarily, is likely to be severe.

So, the above P4 algorithm is unacceptable. To weaken it,

we observe that the P4 need only synchronize against other

classes that lie on the cycle including the P4 class,

since only classes on cycles can cause non-serially

reproducible logs. Also, we note that even these classes

need not quiesce completely before the P4 runs. All that

we need is the weaker condition that the log be equivalent

to some log in which all of the classes have quiesced

before the P4. With these observations in mind, a much

weaker P4 can be derived.

5.3 Implementation of P4

Protocol schema P4 differs structurally from the other

protocol schemas in two ways: First, P4 requires some

direct communication between transaction modules. By this

communication, the P4 class requests that certain other

transaction modules perform synchronization to avoid

conflicting with the P4 transaction. Second, P4 requires

an augmented form of read condition. Recall that a

standard read condition is a pair <timestamp, [classes}>.

For P4, the timestamp may be interpreted as a "minimum
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time", i.e., <mintime=timestamp, {classes]>. This

condition is satisfied if all WRITE messages from

{classesi timestamped less than "timestamp" have been

received. It does not require that no messages from

classes timestamped greater than "timestamp" be received

(as in standard read conditions).

To implement P4, we use three additional types of messages

that are sent from TM's to TM's (not from TM's to DM's).

A P4-ALERT message is sent from a P4 class to some other

class. A P4-ALERT message includes the P4 class's name

and timestamp as its parameters. A class responds to a

P4-ALERT with either a P4-ACC (i.e., an acceptance) or a

P4-REJ (i.e., a rejection).

To run a transaction t in the P4 class c , one performs

the following steps:

1. Choose a timestamp for tp 4 , say TSp 4 .

2. Send a message P4-ALERT (TSp 4) to every class that

lies on the cycle in CG(D).

3. Wait for the P4-ACC's to be received from all

classes to which a P4-ALERT was sent. If a P4-REJ

is received, then restart the protocol from step 1.

. . .. . . . .. . . . . . - ."
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4. Construct the READ messages for t For each data

module, alpha, to which a read message will be

sent, include a condition <TSp 4 ,Ci> for each class

C1 such that the edge (r~pa WJpha) lies on the

cycle.

When a transaction module receives a P4-ALERT(tp4 , TSp4 )

for a particular class, ci, it performs the following

steps:

1. If the class has run or begun running a transaction

with a timestamp greater than TSp4 , then respond to

c by sending P4-REJ. Otherwise, send P4-ACC and

do not run another transaction in c. timestamped

earlier than TSp4 .
P4

2. For the next transaction run in ci, for each

datamodule alpha and each class c. such that edge

(r pha' wh lies on a cycle with C include

the condition <mintime:TSP4 , cj>, in the READ

message to DM These conditions are in

addition to those normally included by c. in its

read messages.

. * *
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It should be emphasized that (2) is only performed for the S
first transaction executed in C i with timestamp greater

than TSp 4 . Later transactions in ci can run P1 again, . .

with respect to this P4 cycle.

5.4 Proof of Correctness for Protocol P4

A proof of serial reproducibility incorporating protocol '-

P4 has been developed and will appear in a later Technical --

Report. 2

• .... ,

..................
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A. Update Semantics and Fragment Definition

A.1 Insertion / Deletion Semantics

The basic update operation in SDD-1 is a WRITE message

that changes the value of existing data items (see Section

2). To enable insertions and deletions using this write

message format, we augment each relation by a special

boolean domain named "Existence-bit" (abbr. E-bit). From

a logical viewpoint, every TID value is "present" in the

sense that it can be referenced. We distinguish between

TIDs that label real tuples and those that label an empty

slot for a tuple by the E-bit: If E-bit=1 then the tuple

exists in the relation; otherwise, the tuple does not

exist.

* Using this model, we define four operation on relations:

RETRIEVE, DELETE, INSERT, and CONDITIONAL INSERT. These

are the kinds of operations that we expect users will want ..

to perform on SDD-1 relations, and they essentially

correspond to standard query language commands. RETRIEVE

% .
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selects a portion of a relation to be read; it only reads

71 tuples with the E-bit = 1. DELETE simply sets E-bit = 0

for the tuples to be deleted. INSERT sets E-bit 1 1 for

the TID values for tuples to be inserted. CONDITIONAL

INSERT inserts TIDs provided they do not already exist, by

checking that E-bit : 0 before setting E-bit : 1. This

latter operation may be needed to avoid overwriting

already existing tuples.

The E-bit domain must be used in determining the read-set

and write-set for a class of transactions. Insert and

delete operations are in conflict precisely insofar as

they both use the E-bit domain, and this conflict may

require adding some edges to the conflict graph.

A.2 Fragment Updates

Recall the definition of logical fragments. First

partition the relation according to a set of restrictions

and then define each logical fragment to be a projection

of a partition on the TID domain and one other domain.

That fragments are defined logically creates certain

problems on updates. If the restriction qualification V_

that defines a fragment uses domain D, say, then updates

• i;--?- :2 ?. :. ? ..-ii- .;i ; 2.;; -: .?;;; .: i~i;i- .l --i -; - -, -;i i :. , - ; ,;. , , - , . --. ,i , .-i ,. .- .. -. -?. -A-
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- to a D-value may cause a tuple to "migrate" from one

partition (and hence fragment) to another. For example,

if the EMPLOYEE relation is partitioned based on the

DEPARTMENT domain, then moving an employee to a new

department causes a tuple migration to a different

partition. Since fragments in different partitions are

stored as independant files, often at different data

modules, the tuple migration requires WRITE messages to

delete the tuple from one fragment and add it to another.

When determining the read-sets and write-sets of a

transaction class, potential tuple migrations must be

considered, since additional WRITE messages may be

required to maintain the consistency of the fragment

within its definition.

~ I.: ;. * . .~ * .,* . ...--.
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